L'equazione lineare in x e y

L'equazione: ax + by + c = 0 con $a, b, c \in R$, $a \in b$ non contemporaneamente nulli, si dice equazione lineare nelle due variabili $x \in y$.

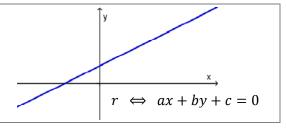
Ogni coppia $(x_0; y_0)$ tale che: $ax_0 + by_0 + c = 0$ si dice soluzione dell'equazione.

TEOREMA

Ad ogni retta del piano cartesiano corrisponde un'equazione lineare in due variabili

e, viceversa,

a ogni equazione lineare in due variabili corrisponde una retta del piano cartesiano.



Esiste cioè, una corrispondenza biunivoca fra i punti di una retta e le soluzioni della corrispondente equazione lineare.

Dimostrazione 1 Ad ogni retta del piano cartesiano corrisponde un'equazione lineare in due variabili

Consideriamo prima i casi particolari:

La retta r è parallela all'asse y .

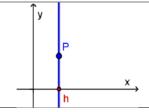
Ogni punto P della retta r ha ascissa h e, viceversa, ogni punto P avente ascissa h, qualunque sia la sua ordinata, appartiene necessariamente alla retta r.

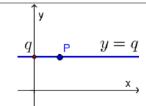
Quindi tutti e soli i punti della retta soddisfano l'equazione x = h.

La retta r è parallela all'asse x:

Ogni punto P della retta r ha ordinata q e, viceversa, ogni punto P avente ordinata q, qualunque sia la sua ascissa, appartiene necessariamente alla retta r.

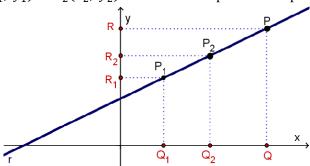
Quindi tutti e soli i punti della retta soddisfano l'equazione y = q.





Consideriamo poi il caso di una generica retta r del piano non parallela agli assi.

Fissiamo su essa due punti $P_1(x_1; y_1)$ e $P_2(x_2; y_2)$ e consideriamo poi un terzo punto P(x; y) variabile su di essa.



Per il teorema di Talete si ha:

$$\frac{Q_1 Q}{Q_1 Q_2} = \frac{P_1 P}{P_1 P_2} \qquad e \qquad \frac{P_1 P}{P_1 P_2} = \frac{R_1 R}{R_1 R_2}$$

Per la proprietà transitiva

 $\frac{R_1 R}{R_1 R_2} = \frac{Q_1 Q}{Q_1 Q_2}$

cioè:

 $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ Condizione di allineamento di tre punti

Risolvendo la quale si ricava:

$$(x-x_1)(y_2-y_1)=(x_2-x_1)(y-y_1)$$

$$(y_2 - y_1) x + (x_1 - x_2)y - x_1y_2 + x_2y_1 = 0$$

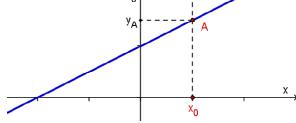
Ricordando che: x_1 , x_2 , y_1 , y_2 sono numeri noti, e ponendo: $a = y_2 - y_1$ $b = x_1 - x_2$ $c = -x_1y_2 + x_2y_1$ Si ottiene: ax + by + c = 0.

Poiché le coordinate di un generico punto P(x; y) della retta soddisfano l'uguaglianza, si conclude che tutti i punti della retta r verificano l'equazione lineare ottenuta.

Dimostriamo ora, che solo i punti della retta soddisfano l'equazione lineare.

Supponiamo per assurdo (negazione della tesi) che le coordinate del punto $P_0(x_0; y_0)$ non appartenente alla retta r siano soluzioni dell'equazione lineare, cioè sia: $ax_0 + by_0 + c = 0$.

Consideriamo poi, un punto $A(x_0; y_A)$ della retta r situato sotto al punto $P_0(x_0; y_0)$.



Essendo il punto $A(x_0; y_A) \in r$ risulta che: $ax_0 + by_A + c = 0$

Sottraendo membro a membro le due equazioni si ottiene: $b(y_A - y_0) = 0$

Essendo $b \neq 0$, poiché la retta non è parallela all'asse y, si ricava: $y_A - y_0 = 0$ cioè: $y_A = y_0$

Il che equivale a dire che il punto $P_0(x_0; y_0)$ coincide con il punto A.

Dimostrazione 2 Ad ogni equazione lineare in due variabili corrisponde una retta del piano

Consideriamo prima i casi particolari:

$$a = 0 \quad \land \quad b \neq 0$$

L'equazione diventa: $by + c = 0 \rightarrow y = -\frac{c}{b}$

Essa è verificata da tutte le coppie $\left(x; -\frac{c}{b}\right)$ che individuano una retta parallela all'asse x.

$$a \neq 0 \quad \land \quad b = 0$$

L'equazione diventa: $ax + c = 0 \rightarrow x = -\frac{c}{a}$

Essa è verificata da tutte le coppie $\left(-\frac{c}{a};y\right)$ che individuano una retta parallela all'asse y.

Consideriamo poi il caso generale:

$$a \neq 0 \quad \land \quad b \neq 0$$

L'equazione è: ax + by + c = 0

Consideriamo tre soluzioni qualsiasi dell'equazione lineare: $(x_1; y_1), (x_2; y_2), (x_3; y_3)$.

 $ax_1 + by_1 + c = 0$

Sostituendo nell'equazione lineare si ha: $ax_2 + by_2 + c = 0$ $ax_3 + by_3 + c = 0$

Sottraendo la I^a equazione dalla II^a equazione si ha: $a(x_2 - x_1) + b(y_2 - y_1) = 0$ cioè: $\frac{x_2 - x_1}{y_2 - y_1} = -\frac{b}{a}$

Sottraendo la I\(^a\) equazione dalla III\(^a\) equazione si ha: $a(x_3-x_1)+b(y_3-y_1)=0$ cio\(^a\): $\frac{x_3-x_1}{y_3-y_1}=-\frac{b}{a}$

Per la proprietà transitiva si ha: $\frac{x_2 - x_1}{y_2 - y_1} = \frac{x_3 - x_1}{y_3 - y_1}$ cioè $\frac{y_3 - y_1}{y_2 - y_1} = \frac{x_3 - x_1}{x_2 - x_1}$

che rappresenta la condizione di allineamento di tre punti.

Pertanto le soluzioni dell'equazione lineare sono le coordinate di tre punti della retta.

La retta passante per due punti

La condizione di allineamento di tre punti rappresenta anche l'equazione della retta passante per due punti $P_1(x_1; y_1)$ e $P_1(x_2; y_2)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

La forma esplicita della retta

L'equazione ax + by + c = 0 è detta forma implicita della retta.

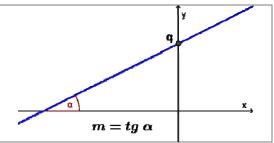
Se ricaviamo l'equazione rispetto alla variabile y si ottiene la forma esplicita della retta.

$$ax + by + c = 0$$
 \iff
$$\begin{cases} y = -\frac{a}{b}x - \frac{c}{b} & \text{se } b \neq 0 \\ ax + c = 0 & \text{se } b = 0 \end{cases}$$

Ponendo: $\begin{cases} m = -\frac{a}{b} \\ q = -\frac{c}{b} \end{cases}$ si ottiene la forma esplicita y = mx + q

Il coefficiente m è detto coefficiente angolare.

Il coefficiente q è detto ordinata all'origine.



Il coefficiente angolare

Il **coefficiente angolare** di una retta non parallela all'asse *y* è il rapporto fra la differenza delle ordinate e la differenza delle ascisse di due punti distinti della retta.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Dimostrazione

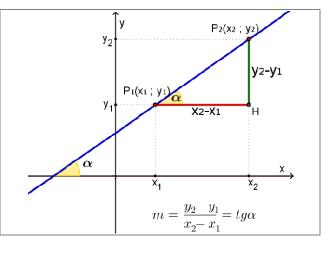
Siano P_1 e P_2 due punti della retta y = mx + q.

Le coordinate $(x_1; y_1)$ soddisfano l'equazione $y_1 = mx_1 + q$

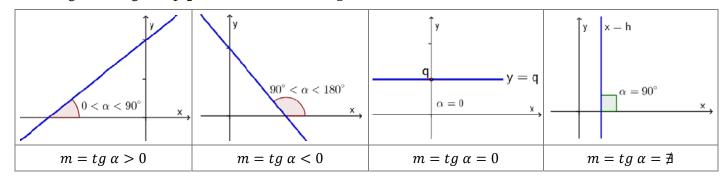
Le coordinate $(x_2; y_2)$ soddisfano l'equazione $y_2 = mx_2 + q$

Sottraendo membro a membro si ha: $y_2 - y_1 = m(x_2 - x_1)$

Da cui si ottiene: $m = \frac{y_2 - y_1}{x_2 - x_1}$



Dal triangolo rettangolo P_1P_2H si ricava che $m = \operatorname{tg} \alpha$.



La retta passante per un punto e con dato coefficiente angolare

L'equazione della retta passante per il punto $P_1(x_1; y_1)$ e avente coefficiente angolare m è data da: $y-y_1=m(x-x_1)$.

Dimostrazione

Dalla relazione $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$ si ottiene: $y-y_1 = \frac{y_2-y_1}{x_2-x_1} \cdot (x-x_1)$ con $\frac{y_2-y_1}{x_2-x_1} = m$

$$y - y_1 = m(x - x_1)$$

La retta passante per l'origine

L'equazione della retta passante per l'origine degli assi cartesiani è data da:

y = mx

Rette particolari				
Bisettrice del I - III quadrante	Bisettrice del II e IV quadrante	Asse delle <i>x</i>	Asse delle <i>y</i>	
y = x 45° C x	$y = -x$ $A5^{\circ}$ X	y=0 $y=0$		

Teorema - Rette parallele

Due rette r ed s (non parallele all'asse y) sono parallele

r ed s hanno lo stesso coefficiente angolare

$Dimostrazione \implies$

Consideriamo due rette parallele r ed s (non verticali) che intersecano l'asse x, rispettivamente nei punti A e A'Prendiamo sull'asse x

il punto B distante 1 da A

il punto B' distante 1 da A'.

Consideriamo poi:

sulla retta r il punto C con la stessa ascissa di Bsulla retta s il punto C' con la stessa ascissa di B'

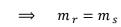
I triangoli ABC e A'B'C' sono congruenti perché hanno:

 $AB \cong A'B'$ e $\hat{A} \cong \hat{B}$ (angoli corrispondenti)

Pertanto si ha che:
$$BC \cong B'C'$$
.

Ma: $m_r = \frac{y_C - y_A}{x_C - x_A} = \frac{y_C - 0}{1} = \overline{BC}$ e $m_s = \frac{y_C' - y_{A'}}{x_{C'} - x_{A'}} = \frac{y_{C'} - 0}{1} = \overline{B'C'}$ \Longrightarrow $m_r = m_s$.

$$m_s = \frac{y_{C'} - y_{A'}}{x_{C'} - x_{A'}} = \frac{y_{C'} - 0}{1} = 1$$



Dimostrazione ←

Procedendo in modo inverso:

Se
$$m_r = m_s$$
 \Rightarrow $\frac{y_{C} - y_A}{x_C - x_A} = \frac{y_{C'} - y_{A'}}{x_{C'} - x_{A'}}$ \Rightarrow $\frac{y_{C} - 0}{1} = \frac{y_{C'} - 0}{1}$ \Rightarrow $y_C = y_{C'}$ \Rightarrow $\overline{BC} = \overline{B'C'}$

I triangoli rettangoli ABC e A'B'C' sono congruenti perché hanno: $AB \cong A'B'$ e $BC \cong B'C'$.

Avendo dimostrato che i triangoli ABC e A'B'C' sono congruenti $\Rightarrow \hat{A} \cong \hat{B} \Rightarrow r \parallel s$.

Teorema

Dimostrazione

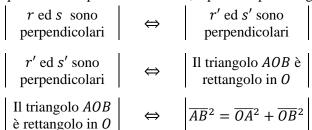
$$r \parallel s \qquad \Longleftrightarrow \qquad m_r = m_s \qquad {
m cioè} \qquad -\frac{a}{b} = -\frac{a\prime}{b\prime} \qquad \qquad \frac{a}{b} - \frac{a\prime}{b\prime} = 0 \qquad ab\prime - a\prime b = 0 \; .$$

Due rette r ed s (non parallele agli assi) sono perpendicolari

Il prodotto dei loro coefficienti angolari è -1 $m_r \cdot m_s = -1$

<u>Dimostrazione</u> ⇔

Date due rette r ed s, non parallele agli assi, consideriamo le due rette r' ed s', rispettivamente parallele a r e a s, e passanti per l'origine.



Le equazioni delle rette in questione sono:

Le equazioni dene rette in questione sono.
$$r: y = m_r x + q_r \quad \text{e} \quad s: \quad y = m_s x + q_s$$

$$r': y = m_r x \quad \text{e} \quad s': \quad y = m_s x$$
 Consideriamo il punto A di r e il punto B di s aventi ascissa 1: $A(1; m_r)$ e $B(1; m_s)$
$$\overline{AB} = |m_r - m_s| \qquad \Rightarrow \qquad \overline{AB}^2 = (m_r - m_s)^2$$

$$\overline{OA} = \sqrt{(1 - 0)^2 + (m_r - 0)^2} \qquad \overline{OA}^2 = (1 - 0)^2 + (m_r - 0)^2$$

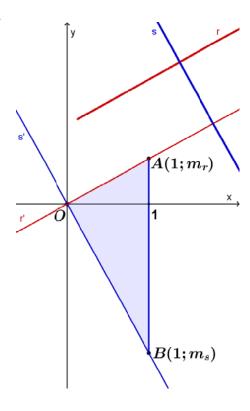
$$\overline{OB} = \sqrt{(1 - 0)^2 + (m_s - 0)^2} \qquad \overline{OB}^2 = (1 - 0)^2 + (m_s - 0)^2$$
 Quindi la relazione:
$$\overline{AB}^2 = \overline{OA}^2 + \overline{OB}^2 \quad \text{diviene:}$$

$$(m_r - m_s)^2 = (1 - 0)^2 + (m_r - 0)^2 + (1 - 0)^2 + (m_s - 0)^2$$

$$m_r^2 + m_s^2 - 2m_r m_s = 1 + m_r^2 + 1 + m_s^2$$

$$-2m_r m_s = 2$$

$$m_r m_s = -1$$
.



Posizione reciproca di due rette

Dalla geometria euclidea, sappiamo che due rette complanari r ed s possono trovarsi in tre possibili diverse posizioni: incidenti, coincidenti, parallele e distinte.

Analiticamente ciò si traduce in tre diversi tipi di sistemi:

Sistema determinato	Sistema impossibile	Sistema indeterminato
a'x + b'y + c' = 0	$ax + by + c = 0$ $x \rightarrow a'x + b'y + c' = 0$	$ax + by + c = 0$ $a'x + b'y + c' = 0$ $x \rightarrow$
rette incidenti	rette parallele	rette coincidenti
$m \neq m' \Leftrightarrow \frac{a}{a'} \neq \frac{b}{b'}$	$(m=m') \land (q \neq q') \iff \frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$	$(m=m') \wedge (q=q') \iff \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$

Distanza di un punto da una retta

Retta parallela all'asse x	Retta parallela all'asse y	
$\overline{PH} = y_P - q $	$\overline{PH} = x_P - h $	
$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & $	$ \begin{array}{c c} $	

Retta non parallela agli assi cartesiani

Distanza del punto $P(x_P; y_P)$ dalla retta ax + by + c = 0

$$d = \frac{|ax_P + by_P + c|}{\sqrt{a^2 + b^2}}$$

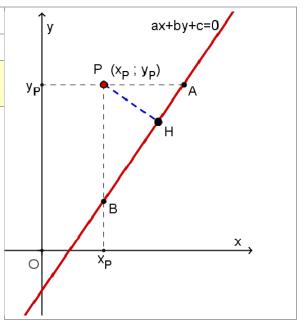
Dimostrazione

Determiniamo la distanza del punto $P(x_p; y_P)$ dalla retta ax + by + c = 0 mediante la formula dell'altezza relativa all'ipotenusa del triangolo rettangolo ABP: $\overline{PH} = \frac{\overline{PA} \cdot \overline{PB}}{\overline{AB}}$ (*).

L'ascissa del punto $B
in x_B = x_P$

L'ordinata del punto B è $y_B = -\frac{a}{b}x_P - \frac{c}{b}$ ($B \in r$)

L'ascissa del punto A è $x_A = -\frac{b}{a}y_P - \frac{c}{a}$ ($A \in r$)



$$\overline{PA} = \left| x_P - \left(-\frac{b}{a} y_P - \frac{c}{a} \right) \right| = \left| \frac{ax_P + by_P + c}{a} \right| \qquad \overline{PB} = \left| y_P - \left(-\frac{a}{b} x_P - \frac{c}{b} \right) \right| = \left| \frac{ax_P + by_P + c}{b} \right| \\
\overline{AB} = \sqrt{\left[x_P - \left(-\frac{b}{a} y_P - \frac{c}{a} \right) \right]^2 + \left[y_P - \left(-\frac{a}{b} x_P - \frac{c}{b} \right) \right]^2} = \sqrt{\left(\frac{ax_P + by_P + c}{a} \right)^2 + \left(\frac{ax_P + by_P + c}{b} \right)^2} = \\
= \sqrt{\frac{(ax_P + by_P + c)^2}{a^2} + \frac{(ax_P + by_P + c)^2}{b^2}} = \sqrt{\frac{b^2 \cdot (ax_P + by_P + c)^2 + a^2 \cdot (ax_P + by_P + c)^2}{a^2b^2}} = \\
= \sqrt{\frac{(ax_P + by_P + c)^2 \cdot (a^2 + b^2)}{a^2b^2}} = \frac{|ax_P + by_P + c|}{|ab|} \cdot \sqrt{a^2 + b^2} .$$

Sostituendo in (*) si ottiene:

$$\overline{PH} = \frac{\overline{PA} \cdot \overline{PB}}{\overline{AB}} = \frac{\left| \frac{ax_P + by_P + c}{a} \right| \cdot \left| \frac{ax_P + by_P + c}{b} \right|}{\left| \frac{ax_P + by_P + c}{b} \right|} = \frac{\left| \frac{ax_P + by_P + c}{a} \right| \cdot \sqrt{a^2 + b^2}}{\left| \frac{ab}{a} \right|} = \frac{\left| \frac{ax_P + by_P + c}{a} \right| \cdot \left| \frac{ax_P + by_P + c}{b} \right|}{\left| \frac{ax_P + by_P + c}{a} \right|} = \frac{\left| \frac{ax_P + by_P + c}{a^2 + b^2} \right|}{\sqrt{a^2 + b^2}} = \frac{\left| \frac{ax_P + by_P + c}{a^2 + b^2} \right|}{\sqrt{a^2 + b^2}}.$$

Luoghi geometrici

L'asse di un segmento

Asse di un segmento AB

$$(x - x_A)^2 + (y - y_A)^2 = (x - x_B)^2 + (y - y_B)^2$$

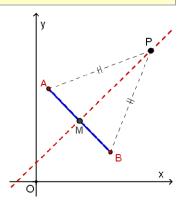
Dimostrazione

L'asse di un segmento è la retta perpendicolare al segmento passante per il suo punto

L'asse di un segmento è il luogo geometrico dei punti del piano equidistanti dagli estremi del segmento.

Considerato pertanto, un punto P(x; y) appartenente all'asse del segmento AB, applicando la definizione, si ha che:

$$\overline{PA} = \overline{PB}$$
; $\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = \sqrt{(x_P - x_B)^2 + (y_P - y_B)^2}$
 $(x - x_A)^2 + (y - y_A)^2 = (x - x_B)^2 + (y - y_B)^2$



La simmetria assiale

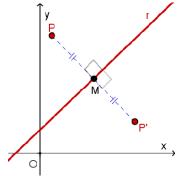
Fissata nel piano una retta r: y = mx + q, la simmetria assiale rispetto alla retta r è quella isometria che ad ogni punto $P(x_P; y_P)$ del piano fa corrispondere il punto $P'(x'_P; y'_P)$ del semipiano opposto rispetto ad r, in modo che r sia l'asse del segmento PP' ossia:

mento
$$PP'$$
 ossia:

1. r passa per il punto medio di PP'

2. PP' è perpendicolare alla retta r

$$\begin{cases} x' = \frac{1}{1+m^2}[(1-m^2)x + 2my - 2mq] \\ y' = \frac{1}{1+m^2}[2mx + (m^2 - 1)y + 2q] \end{cases}$$



Dimostrazione

Dopo aver ricavato le coordinate del punto medio $M\left(\frac{x_P+x_P'}{2}; \frac{y_P+y_P'}{2}\right)$ del segmento PP', imponiamo che il punto appartenga alla retta r: $\frac{y_p + y_p'}{2} = m \cdot \frac{x_p + x_p'}{2} + q$.

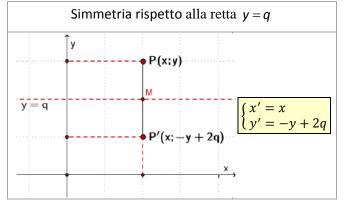
Dopo aver determinato il coefficiente angolare del segmento PP': $m_{PP} = \frac{y_P' - y_P}{x_P' - x_P}$

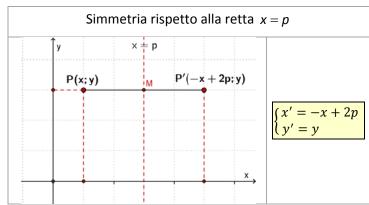
imponiamo la condizione di perpendicolarità: $\frac{y_P' - y_P}{x_P' - x_P} = -\frac{1}{m}$.

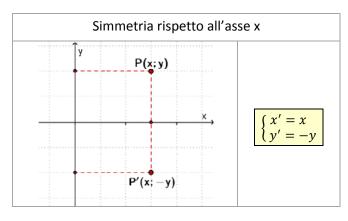
Risolviamo quindi il sistema formato da queste due equazioni, considerando x'_P e y'_P come incognite.

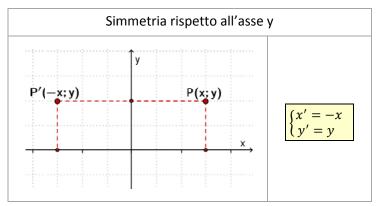
$$\begin{cases} \frac{y+y}{2} = m \cdot \frac{x+x}{2} + q & \begin{cases} y \\ \frac{y'-y}{x'-x} = -\frac{1}{m} & \end{cases} \\ \begin{cases} y + \frac{my-x'+x}{m} = mx + mx' + 2q \\ -\frac{y'-y}{m} = my + my + x - m^2x - 2mq \\ -\frac{y'-y}{m} = \frac{my - \left[\frac{2my + (1-m^2)x - 2mq}{1+m^2}\right] + x}{m} \\ \begin{cases} y' = \frac{y + m^2y - 2y + mx + 2q + mx}{m(1+m^2)} \end{cases} \\ \begin{cases} y' = \frac{2mx + (m^2 - 1)y + 2q}{1+m^2} \end{cases} \end{cases}$$

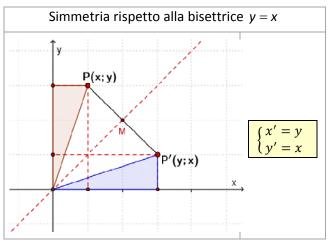
Per semplificare la scrittura delle espressioni indichiamo:
$$x_P' = x'$$
 $y_P' = y'$ $x_P = x$ $y_P = y$.
$$\begin{cases} \frac{y+y'}{2} = m \cdot \frac{x+x'}{2} + q & \begin{cases} y+y' = mx + mx' + 2q \\ my' - my + x' - x = 0 \end{cases} & \begin{cases} y+y' = mx + mx' + 2q \\ y' = \frac{my - x' + x}{m} \end{cases} \\ \begin{cases} y + \frac{my - x' + x}{m} = mx + mx' + 2q \end{cases} & \begin{cases} my + my - x' + x = m^2x + m^2x' + 2mq \\ -1 + m^2 \end{cases} \\ \begin{cases} x' = \frac{2my + (1 - m^2)x - 2mq}{1 + m^2} \end{cases} & \begin{cases} x' = \frac{2my + (1 - m^2)x - 2mq}{1 + m^2} \end{cases} \\ \begin{cases} y' = \frac{y + m^2y - 2y + mx + 2q + mx}{m(1 + m^2)} \end{cases} & \begin{cases} y' = \frac{my + m^3y - 2my - x + m^2x + 2mq + x + m^2x}{1 + m^2} \end{cases} \\ \begin{cases} y' = \frac{m^2y - y + 2q + 2mx}{1 + m^2} \end{cases} \end{cases} \\ \begin{cases} x' = \frac{1}{1 + m^2} [(1 - m^2)x + 2my - 2mq] \\ y' = \frac{1}{1 + m^2} [2mx + (m^2 - 1)y + 2q] \end{cases} \end{cases}$$

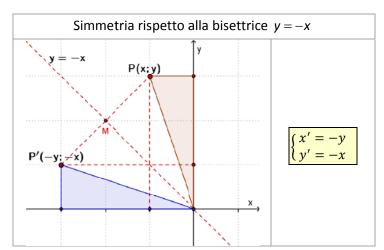




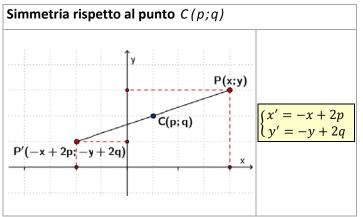


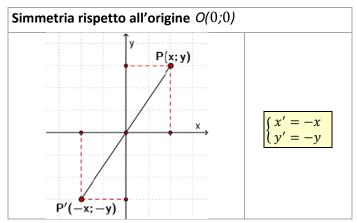






La simmetria centrale





Luogo dei punti equidistanti da due rette incidenti

$$ax + by + c = 0$$

$$a'x + b'y + c' = 0$$

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \mp \frac{a'x + b'y + c}{\sqrt{a'^2 + b'^2}}$$

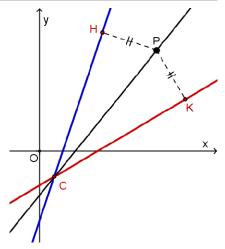
Dimostrazione

Se le rette r: ax + by + c = 0 ed s: a'x + b'y + c' = 0 sono incidenti, il luogo geometrico dei punti del piano equidistanti dalle due rette è costituito dai punti P(x; y) appartenenti alle due bisettrici degli angoli formati dalle due rette.

Considerato pertanto, un punto P(x; y) del piano imponiamo che la distanza di P dalla retta r sia uguale alla distanza di P dalla retta s.

$$\overline{PH} = \overline{PK}; \qquad \frac{|ax + by + c|}{\sqrt{a^2 + b^2}} = \frac{|a'x + b'y + c'|}{\sqrt{a'^2 + b'^2}}$$

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \mp \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$



Luogo dei punti equidistanti da due rette parallele

Mediana della striscia delimitata dalle due rette

$$y = mx + q$$
 e $y = mx + q'$

$$y = mx + \frac{q + q'}{2}$$

Dimostrazione

Se le rette r: y = mx + q ed s: y = mx + q' sono parallele, il luogo geometrico dei punti del piano equidistanti dalle due rette è costituito dai punti P(x; y) appartenenti alle mediana della striscia delimitata dalle due rette.

Pertanto la sua equazione è: $y = mx + \frac{q+q'}{2}$.



Nota 1

$$|A(x)| = |B(x)| \Leftrightarrow A(x) = \mp B(x)$$

Infatti, ricordando che:
$$|A(x)| = k (con k > 0) \Leftrightarrow A(x) = \mp k$$

Si ha che:
$$|A(x)| = |B(x)|$$
 \Leftrightarrow $A(x) = \mp B(x)$ \Leftrightarrow $A(x) = \mp B(x)$

Luogo dei punti aventi distanza assegnata da una retta

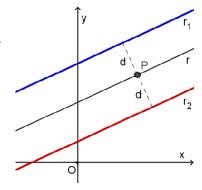
Rette parallele alla retta r

poste da parti opposte rispetto ad r e a distanza d

$$\frac{|ax + by + c|}{\sqrt{a^2 + b^2}} = d$$

Il luogo geometrico è costituito dai punti P(x; y) appartenenti alle due rette r_1 ed r_2 , parallele alla retta r, poste a distanza d e da parti opposte rispetto alla retta r.

La sua equazione è: $\frac{|ax+by+c|}{\sqrt{a^2+b^2}} = d$.



Luoghi determinati da equazioni parametriche

Il luogo geometrico è costituito dai punti P(x; y) del piano che soddisfano equazioni (parametriche) dipendenti da un parametro. Al variare del parametro si ottengono tutti i punti del luogo geometrico.

Esempio 1

Dato un sistema di riferimento cartesiano in un piano, si dica che cosa rappresenta l'insieme dei punti P le cui coordinate hanno equazioni parametriche:

$$\begin{cases} x = 3t - 2 \\ y = 4t \end{cases} \quad con \ t \in R$$

Soluzione

Per determinare l'equazione cartesiana del luogo, occorre eliminare il parametro *t* dalle due equazioni. Ricaviamo pertanto il parametro t dalla seconda equazione e lo sostituiamo nella prima:

$$t = \frac{1}{4}y$$
 \Rightarrow $x = 3 \cdot \frac{1}{4}y - 2$ $4x - 3y + 8 = 0$. Pertanto il luogo rappresenta una retta.

Esempio 2

Dato un sistema di riferimento cartesiano (ortogonale monometrico) in un piano, si dica che cosa rappresenta l'insieme dei punti $P(1+t^2; 1+t^2)$, ottenuto al variare di t nei reali. (Esame di Stato Ordinamento, Sessione suppletiva, 2008)

Soluzione

Ricaviamo pertanto il parametro t dalla prima equazione e lo sostituiamo nella seconda:

$$t^2 = x - 1$$
 \Rightarrow $y = 1 + x - 1$ $y = x$
Essendo però $x = 1 + t^2 \ge 1$ $\forall t \in R$ il luogo rappresenta la semiretta di equazione $y = x$ con $x \ge 1$.

Esempio 3

Siano r ed s due qualunque rette del fascio di centro C(1;3) tra loro perpendicolari e siano A e B rispettivamente le intersezioni di r con l'asse y e di s con l'asse x. Determinare il luogo descritto dal punto medio P del segmento AB.

Soluzione

Due rette per *C* tra loro perpendicolari hanno equazioni:

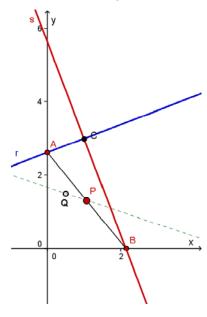
r:
$$y - 3 = m(x - 1)$$
 e s: $y - 3 = -\frac{1}{m}(x - 1)$ con $m \neq 0$
Il punto $A(0; 3 - m)$, il punto $B(1 + 3m; 0) \Rightarrow$ il punto $P\left(\frac{1 + 3m}{2}; \frac{3 - m}{2}\right)$

Pertanto le equazioni parametriche del luogo sono: $\begin{cases} x = \frac{1+3m}{2} \\ y = \frac{3-m}{2} \end{cases} \forall m \in \mathbb{R} - \{0\}$

Eliminando il parametro m si ottiene:

$$m = \frac{2x-1}{3}$$
 \Rightarrow $y = \frac{3-\frac{2x-1}{3}}{2}$; $y = \frac{\frac{10-2x}{3}}{2}$; $y = \frac{10-2x}{6}$; $y = \frac{5-x}{3}$

Il luogo descritto da P al variare di m è la retta x+3y-5=0 privata del punto $Q\left(\frac{1}{2};\frac{3}{2}\right)$, ottenuto per m=0.



I Fasci di rette

Fascio proprio di rette

L'insieme di tutte le rette del piano che passano per uno stesso punto C si chiama fascio proprio di rette per C.

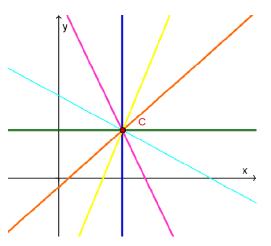
Il punto C è detto centro del fascio.

L'equazione del fascio di rette passante per il punto $C(x_C; y_C)$ ha equazione: $y - y_C = m \cdot (x - x_C)$.

Al variare di m si ottengono tutte le rette del fascio passanti per il punto P, tranne la parallela all'asse y, avente equazione $x = x_C$.

Pertanto, il fascio completo è rappresentato dalle equazioni:

$$y - y_C = m \cdot (x - x_C)$$
 $\forall x = x_C$ $con m \in R$



Fascio improprio di rette

Data una retta r del piano.

L'insieme formato dalla retta r e da tutte le rette a essa parallele si chiama fascio improprio di rette parallele a r.

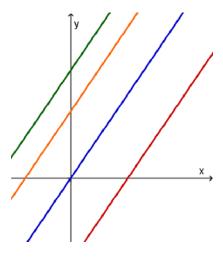
La retta r è detta retta base del fascio.

Se la retta r è in forma esplicita y = mx + q l'equazione del fascio è

Se la retta r è in forma implicita ax + by + c = 0 l'equazione del fascio è

$$y = mx + k$$
$$\operatorname{con} k \in R$$

$$ax + by + k = 0$$
$$con k \in R$$



Combinazione lineare di due equazioni

Date due equazioni ax + by + c = 0 ed a'x + b'y + c' = 0,

l'espressione:
$$p \cdot (ax + by + c) + q \cdot (a'x + b'y + c') = 0$$

 $\forall p,q \in R \text{ non entrambi nulli}$

è detta combinazione lineare delle due equazioni. I numeri p e q sono detti parametri della combinazione lineare.

Se una coppia di numeri $(\alpha; \beta)$ è soluzione di entrambe le equazioni date, allora è anche soluzione di ogni loro combinazione lineare.

Fascio proprio generato da due rette incidenti

Date due rette r ed s di equazioni r: ax + by + c = 0 ed s: a'x + b'y + c' = 0 che si incontrano nel punto $C(x_C; y_C)$, le equazioni di tutte le rette del fascio proprio passanti per C si ottengono dalla combinazione lineare delle due rette r ed s:

$$p \cdot (ax + by + c) + q \cdot (a'x + b'y + c') = 0$$

 $\forall p, q \in R \quad non \ entrambi \ nulli$

Le rette r ed s sono dette generatrici del fascio. La retta r si ottiene per q = 0. La retta s si ottiene per p = 0.

Poiché p e q non sono entrambi nulli, possiamo supporre che sia $p \neq 0$ e dividere tutti i termini per p, ottenendo:

$$ax + by + c + \frac{q}{p} \cdot (a'x + b'y + c') = 0$$
. Ponendo in quest'ultima $\frac{q}{p} = k$ si ottiene:

$$ax + by + c + k \cdot (a'x + b'y + c') = 0 \qquad \forall k \in R$$

La retta r si ottiene per k = 0.

La retta s non si ottiene per alcun valore di k. Impropriamente si dice che la retta s si ottiene per $k = \infty$, perché facendo assumere a k valori sempre più grandi, si ottengono rette del fascio che tendono ad assumere la stessa direzione della retta s.

Fascio improprio generato da due rette parallele

Se le rette generatrici sono parallele le loro equazioni sono del tipo r: ax + by + c = 0 ed s: ax + by + c' = 0.

La combinazione lineare delle due rette r ed s è:

$$ax + by + c + k \cdot (ax + by + c') = 0$$

 $\forall p, q \in R$ non entrambi nulli

Esplicitando l'incognita y si ottiene:

$$by + kby = -ax - kax - c - kc'$$
;

$$(1+k)bv = -(1+k)ax - c - kc'$$
:

$$y = -\frac{(1+k)a}{(1+k)b}x - \frac{c+kc'}{(1+k)};$$

$$y = -\frac{a}{b}x - \frac{c + kc'}{(1+k)b} \qquad \forall k \neq -1$$

Tale equazione, al variare del parametro k (con $\neq -1$), rappresenta una qualsiasi retta del fascio parallela alle rette generatrici.

Esempio 1

Studiare la natura del fascio di rette:

$$(2k+1)x - (k+2)y + 1 - 4k = 0$$
 con $k \in R$

Soluzione

Calcoliamo il coefficiente angolare del fascio:

$$m = -\frac{a}{b} = -\frac{2k+1}{-(k+2)} = \frac{2k+1}{k+2}$$

Essendo il coefficiente angolare dipendente dal parametro k, si tratta di un fascio proprio di rette.

Riscriviamo l'equazione come combinazione lineare di due rette:

$$2kx + x - ky - 2y + 1 - 4k = 0;$$

$$x - 2y + 1 + k(2x - y - 4) = 0$$
;

Le generatrici del fascio hanno equazioni:

$$r: x - 2y + 1 = 0$$
 ed $s: 2x - y - 4 = 0$

La I^a generatrice r: x - 2y + 1 = 0 si ottiene per k = 0

La II^a generatrice s: 2x - y - 4 = 0 non si ottiene per nessun valore finito di k ($k = \infty$).

Per determinare il centro del fascio, in maniera semplice, conviene ricavare dalla forma implicita del fascio (*traccia*) le due rette del fascio parallele agli assi cartesiani.

Il coefficiente della x si annulla per $k = -\frac{1}{2}$. Per tale valore si ottiene la retta y = 2

Il coefficiente della y si annulla per k = -2. Per tale valore si ottiene la retta x = 3

Pertanto il centro del fascio è C(3;2).

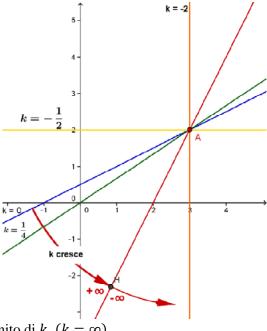
Per determinare il movimento delle rette del fascio al variare del parametro k determiniamo la retta del fascio passante per l'origine degli assi cartesiani.

Tale retta si ottiene per 1 - 4k = 0 cioè per $k = \frac{1}{4}$.

Dall'esame del grafico di queste rette particolari del fascio si deduce che:

Il parametro k assume valori positivi, crescenti da 0 $\alpha + \infty$, quando le rette del fascio, ruotando in senso antiorario attorno a C, passando dalla posizione della prima generatrice r alla posizione della seconda generatrice s.

Se invece la rotazione avviene in senso orario, il parametro k assume valori negativi, decrescenti da $0 \ a - \infty$.



Esempio 2

Studiare la natura del fascio di rette:

$$2(k+1)x - (k+1)y - 6k + 4 = 0$$

 $con k \in R$

Soluzione

Calcoliamo il coefficiente angolare del fascio:

$$m = -\frac{a}{b} = -\frac{2(k+1)}{-(k+1)} = 2$$

Essendo il coefficiente angolare m=2 non dipendente dal parametro k, il fascio è improprio.

Riscriviamo l'equazione come combinazione lineare di due rette:

$$2kx + 2x - ky - y - 6k + 4 = 0$$
;

$$2x - y + 4 + k \cdot (2x - y - 6) = 0$$

Le generatrici del fascio hanno equazioni:

$$r: 2x - y + 4 = 0$$
 ed $s: 2x - y - 6 = 0$

La prima generatrice r: 2x - y + 4 = 0 si ottiene per k = 0.

La seconda generatrice s: 2x - y - 6 = 0 non si ottiene per nessun valore finito di k ($k = \infty$).

L'equazione data pertanto, rappresenta $\forall k \in R - \{-1\}$ tutte le rette di coefficiente angolare, con esclusione della seconda generatrice s: 2x - y - 6 = 0.

Per determinare il movimento delle rette del fascio al variare del parametro k ricaviamo la sua forma esplicita:

$$y = 2x + \frac{4 - 6k}{k + 1} \qquad con \ k \neq -1$$

L'ordinata all'origine è $q = \frac{4-6k}{k+1}$

L'ordinata all'origine è positiva per $k \in \left[-1; \frac{2}{3}\right]$

L'ordinata all'origine è negativa per $k \in]-\infty$; $-1[\cup]\frac{2}{3}$; $+\infty[$.

Nel grafico è descritto il movimento delle rette del fascio al variare del parametro k.