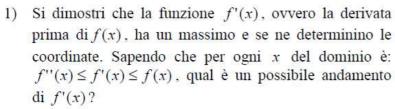
ESAME DI STATO DI LICEO SCIENTIFICO

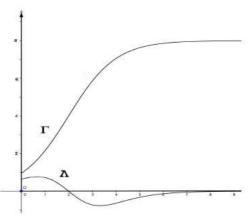
Sessione Ordinaria 2013

PIANO NAZIONALE INFORMATICA Problema 1

Una funzione f(x) è definita e derivabile, insieme alle sue derivate prima e seconda, in $[0, +\infty[$ e nella figura sono disegnati i grafici Γ e Λ di f(x) e della sua derivata seconda f''(x). La tangente a Γ nel suo punto di flesso, di coordinate (2;4), passa per (0;0), mentre le rette y=8 e y=0 sono asintoti orizzontali per Γ e Λ , rispettivamente.







- 3) Se Γ è il grafico della funzione $f(x) = \frac{a}{1 + e^{b-x}}$, si provi che a = 8 e b = 2.
- 4) Nell'ipotesi del punto 3), si calcoli l'area della regione di piano delimitata da Λ e dall'asse x sull'intervallo [0, 2].

Punto 1

Dall'analisi del grafico della derivata seconda e dall'informazione che la funzione Γ ha un flesso in F(2;4) si ha che:

$f^{II}(2)=0$	$f^{II}(x) > 0 \forall x \in (0,2)$	$f^{II}(x) < 0 \forall x \in (2, +\infty)$
---------------	--------------------------------------	---

Ricordiamo che la derivata seconda non è altro che la derivata della derivata prima. Pertanto:

$(f^I)^I = 0 in x = 2$	$(f^I)^I(x) > 0 \forall x \in (0,2)$	$(f^I)^I(x) < 0 \forall x \in (2, +\infty)$
$f^I(x)$ è costante in $x=2$	f^I è crescente $\forall x \in (0,2)$	f^I è decrescente $\forall x \in (2, +\infty)$

Ciò equivale a dire che la funzione derivata prima $f^I(x)$ ha un massimo relativo in x=2.

Per determinare l'ordinata del punto di massimo relativo sfruttiamo l'altra informazione:

Questa indicazione ci permette di calcolare, mediante la formula della retta per due punti, l'equazione della retta tangente ad f(x). Tale tangente ha equazione y=2x con coefficiente angolare $m_t=2$.

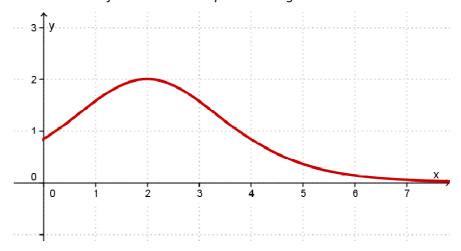
Avendo determinato il coefficiente angolare della retta tangente $m_t=2$, possiamo concludere che: $f^I(2)=2$. In definitiva, le coordinate del punto di massimo della funzione derivata prima $f^I(x)$ sono: (2;2).

L'informazione: $\forall x \in I.D.$ $f^{II}(x) \leq f^{I}(x) \leq f(x)$ indica che il grafico della derivata prima $f^{I}(x)$ è compreso tra i grafici della derivata seconda e della funzione f(x). Inoltre:

$y = 8 asintoto$ $orizzontale \ a \ destra$ \Leftrightarrow	$\lim_{x \to +\infty} f(x) = 8$	\Leftrightarrow	La funzione per $x \to +\infty$ tende ad un andamento parallelo all'asse x	\Leftrightarrow	$\lim_{x \to +\infty} f^I(x) = 0$	\Leftrightarrow	$y = 0$ è un asintoto a destra della funzione $f^{I}(x)$
--	---------------------------------	-------------------	--	-------------------	-----------------------------------	-------------------	--

[&]quot; la tangente nel punto di flesso F(2;4) passa per O(0;0)"

Pertanto un possibile andamento della funzione derivata prima è il seguente:



Punto 2

Dall'esame del grafico della funzione Γ che rappresenta il modello di crescita di una data popolazione si ha:

$f(x)$ è strettamente crescente $\forall x \in (0, +\infty)$	\Leftrightarrow	La popolazione è in continua crescita
f(x) ha un asintoto orizzontale a destra in $y = 8$	\Leftrightarrow	La popolazione, in continua crescita, non oltrepassa il valore limite di 8 unità (milioni, miliardi, ecc. di individui).
La presenza del punto di flesso in F (2;4)	⇔	La crescita avviene con ritmi diversi: nell''intervallo $(0,2)$ il ritmo di crescita aumenta fino ad arrivare al suo massimo valore nel punto $x=2$; nell''intervallo $(2,+\infty)$ il ritmo di crescita rallenta indefinitivamente .

Nota

La velocità di crescita della popolazione nel tempo x è rappresentata dalla derivata prima della funzione f(x)

Punto 3

Essendo la retta y=8 l'asintoto a destra della Γ , deve risultare: $\lim_{x\to +\infty} \frac{a}{1+e^{b-x}}=8$

Poiché
$$\lim_{x \to +\infty} \frac{a}{1 + e^{b-x}} = a$$
 si ha che $a = 8$

Pertanto la funzione da determinare assume la forma $f(x) = \frac{8}{1 + e^{b-x}}$

La cui derivata è:
$$f^{I}(x) = \frac{-8 \cdot (-e^{b-x})}{(1+e^{b-x})^2} = \frac{8e^{b-x}}{(1+e^{b-x})^2}$$

Sfruttiamo poi l'informazione $f^{I}(2) = 2$:

$$\begin{split} \frac{8e^{b-2}}{(1+e^{b-2})^2} &= 2\;; & 8e^{b-2} &= 2\cdot \left(1+e^{b-2}\right)^2\;; & 8e^{b-2} \\ &= 2\cdot \left(1+e^{2(b-2)}+2e^{b-2}\right)\;; & 8e^{b-2} &= 2+2e^{2(b-2)}+4e^{b-2}\;; & 2e^{2(b-2)}-4e^{b-2}+2=0\;; & e^{2(b-2)}-2e^{b-2}+1=0\;; \\ (e^{b-2}-1)^2 &= 0\;; & e^{b-2}-1=0\;; & e^{b-2}=1\;; & b-2=0\;; & b=2\;. \end{split}$$

Punto 4

L'area della regione di piano delimitata da Λ e dall'asse x sull'intervallo $[\ 2\ ,0\]$ è data da:

$$S = \int_0^2 f^{II}(x) dx = \left[f^I(x) \right]_0^2 = \left[\frac{8e^{2-x}}{(1+e^{2-x})^2} \right]_0^2 = \frac{8e^{2-2}}{(1+e^{2-2})^2} - \frac{8e^{2-0}}{(1+e^{2-0})^2} =$$

$$= \frac{8}{(1+1)^2} - \frac{8e^2}{(1+e^2)^2} = 2 - \frac{8e^2}{(1+e^2)^2} \cong 1,16.$$