ESAME DI STATO DI LICEO SCIENTIFICO

Sessione Ordinaria 2012

PIANO NAZIONALE INFORMATICA Problema 2

Siano $f \in g$ le funzioni definite da $f(x) = e^x \in g(x) = \ln x$.

- 1. Fissato un riferimento cartesiano Oxy, si disegnino i grafici di f e di g e si calcoli l'area della regione R che essi delimitano tra $x = \frac{1}{2}$ e x = 1.
- 2. La regione R, ruotando attorno all'asse x, genera il solido S e, ruotando attorno all'asse y, il solido T. Si scrivano, spiegandone il perché, ma senza calcolarli, gli integrali definiti che forniscono i volumi di S e di T.
- 3. Fissato $x_0 > 0$, si considerino le rette r e s tangenti ai grafici di f e di g nei rispettivi punti di ascissa x_0 . Si dimostri che esiste un solo x_0 per il quale r e s sono parallele. Di tale valore x_0 si calcoli un'approssimazione arrotondata ai centesimi.
- 4. Sia h(x) = f(x) g(x). Per quali valori di x la funzione h(x) presenta, nell'intervallo chiuso $\frac{1}{2} \le x \le 1$, il minimo e il massimo assoluti? Si illustri il ragionamento seguito.

Punto 1

L'area della regione R è data da:

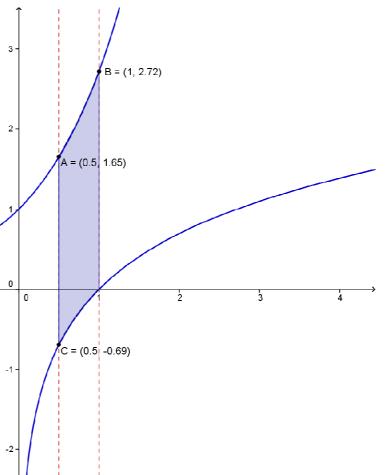
$$R = \int_{\frac{1}{2}}^{1} (e^{x} - \ln x) dx = [e^{x} + x - x \cdot \ln x]_{\frac{1}{2}}^{1} =$$

$$= e^{1} + 1 - 1 \cdot \ln 1 - \left(e^{\frac{1}{2}} + \frac{1}{2} - \frac{1}{2} \cdot \ln \frac{1}{2}\right) =$$

$$= e + 1 - 1 \cdot 0 - e^{\frac{1}{2}} - \frac{1}{2} + \frac{1}{2} \cdot (\ln 1 - \ln 2) =$$

$$= e - \sqrt{e} - \frac{1}{2} \cdot \ln 2 + \frac{1}{2}.$$

-2



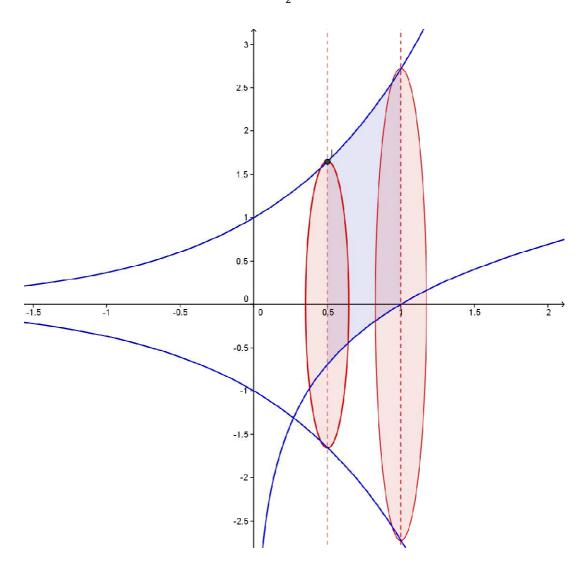
Punto 2.1

La regione R è divisa dall'asse x in due regioni di piano:

- \downarrow una situata sotto l'asse x che indichiamo con R^-
- lacktriangleq un'altra situata sopra l'asse x che indichiamo con R^+ .

Nella rotazione attorno all'asse x, il solido generato dalla regione R^- è incluso nel solido generato dalla rotazione di R^+ Quindi il volume del solido generato dalla rotazione attorno all'asse x dalla regione R è dato da:

$$V_S = \pi \int_{\frac{1}{2}}^{1} (e^x)^2 \, dx$$



Punto 2.2

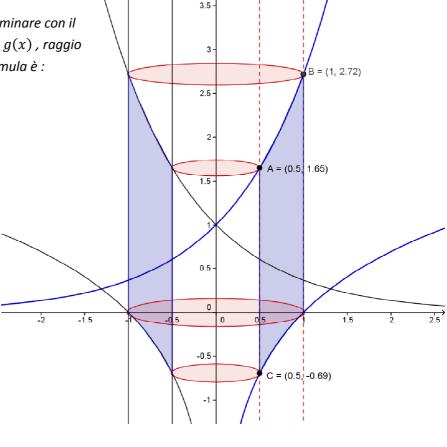
Soluzione 1

Il volume del solido di rotazione T si può determinare con il metodo dei "gusci cilindrici" di altezza f(x) - g(x), raggio esterno x + dx e raggio interno x, la cui formula è :

$$V = 2\pi \int_{a}^{b} x \cdot [f(x) - g(x)] dx$$

Nel nostro caso è :

$$V_T = 2\pi \int_{\frac{1}{2}}^1 x \cdot (e^x - \ln x) \, dx$$



Soluzione 2

Ricordiamo innanzitutto che:

la funzione inversa di $f(x) = e^x$ è $f^{-1}(y) = \ln y$

la funzione inversa di $g(x) = \ln x$ è $g^{-1}(y) = e^y$

Nella rotazione attorno all'asse y, la regione di piano R genera una specie di cilindro incavato nella parte superiore e sporgente nella parte inferiore.

Consideriamo separatamente i due volumi generati dalle due regioni R^- e R^+ .

Il volume generato da R^- è dato dalla differenza fra i volumi $V_{S_i}-V_{C_{ii}}$, dove:

 $V_{S_i} = \pi \int_{ln^{\frac{1}{2}}}^{0} (e^y)^2 \, dy$ è il volume della sporgenza inferiore

 $V_{C_{ii}} = \pi \cdot r^2 \cdot h = \frac{\pi}{4} \left| ln \frac{1}{2} \right| = \frac{\pi}{4} ln \ 2$ è il volume del cilindro interno inferiore raggio di base $r = \frac{1}{2}$ altezza $h = \left| ln \frac{1}{2} \right|$

Il volume generato da R^+ è dato dalla differenza fra i volumi $V_{C_e}-V_{C_{is}}-V_{I_S}$, dove:

 $V_{\mathcal{C}_e} = \pi \cdot r^2 \cdot h = \pi \ e$ è il volume del cilindro esterno superiore (raggio di base r=1 e altezza h=e)

 $V_{C_i} = \pi \cdot r^2 \cdot h = \frac{\pi}{4} \sqrt{e}$ è il volume del cilindro interno superiore (raggio di base $r = \frac{1}{2}$ e altezza $h = \sqrt{e}$)

 $V_{I_S} = \pi \int_{\sqrt{e}}^{e} (\ln y)^2 dy$ è il volume dell'incavo superiore

In definitiva il volume del solido T vale:

$$V_T = V_{S_i} - V_{C_{ii}} + V_{C_e} - V_{C_{is}} - V_{I_s} = \pi \int_{\ln \frac{1}{2}}^{0} e^{2y} dy - \frac{\pi}{4} \ln 2 + \pi e - \frac{\pi}{4} \sqrt{e} - \pi \int_{\sqrt{e}}^{e} \ln^2 y dy$$

Punto 3

Il coefficiente angolare della tangente r è $m_r = f'(x_0) = e^{x_0}$

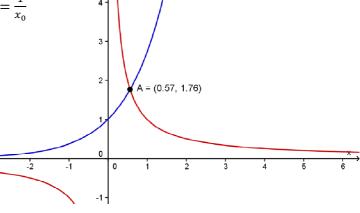
Il coefficiente angolare della tangente s è $m_s=g'(x_0)=rac{1}{x_0}$

Affinché le tangenti siano parallele deve essere: $m_r=m_{\scriptscriptstyle S}$

$$cio\grave{e} \quad e^{x_0} = \frac{1}{x_0}$$

L'equazione $e^x = \frac{1}{x}$ è equivalente al sistema $\begin{cases} y = e^x \\ y = \frac{1}{x} \end{cases}$

Dall'esame dei grafici delle due funzioni si evince che le due curve, hanno solo un'intersezione.



Per determinare un valore approssimato a meno di un centesimo applichiamo il metodo di bisezione alla funzione:

$$z\left(x\right) = e^{x} - \frac{1}{x}$$

La funzione $z(x) = e^x - \frac{1}{x}$ è continua e derivabile $\forall x \neq 0$.

Essendo ·

$$z\left(\frac{1}{2}\right) = e^{\frac{1}{2}} - \frac{1}{\frac{1}{2}} \approx -0.35$$
 e $z(1) = e^{1} - \frac{1}{1} \approx +1.71$

l'intervallo di partenza è: $\left(\frac{1}{2};1\right)$

a _n	bn	m _n	h(a _n)	h(b _n)	h(m _n)	ε _n
0,5	1	0,75	-0,3513	1,7183	0,7837	0,250
0,5	0,7500	0,625	-0,3513	0,7837	0,2682	0,125
0,5	0,6250	0,5625	-0,3513	0,2682	-0,0227	0,063
0,5625	0,6250	0,5938	-0,0227	0,2682	0,1266	0,031
0,5625	0,5938	0,5781	-0,0227	0,1266	0,0530	0,016
0,5625	0,5781	0,5703	-0,0227	0,0530	0,0154	0,008

CONTINUA
CONTINUA
CONTINUA
CONTINUA
X = 0.57

Pertanto un'approssimazione arrotondata ai centesimi di $\,x_0\,\stackrel{.}{e}\,\,\,\,\,\,x_0pprox0$, ${f 57}$.

Punto 4

La funzione $h\left(x\right)=e^{x}-\ln x$ è definita e continua nell'intervallo chiuso e limitato $\left[\frac{1}{2};1\right]$.

Per il teorema di Weierstrass, la funzione ammette, in tale intervallo, il massimo assoluto e il minimo assoluto.

La derivata prima è:

$$h'(x) = e^x - \frac{1}{x}$$

$$h'(x) = 0$$
: $e^x - \frac{1}{x} = 0$; $x_0 \approx 0.57$

$$h'(x) > 0$$
: $e^x - \frac{1}{x} > 0$; $x > x_0$ dal confronto grafico delle due funzioni

$$h'(x) < 0$$
: $e^x - \frac{1}{x} < 0$; $x < x_0$ dal confronto grafico delle due funzioni

Pertanto la funzione assume minimo assoluto in $x_0 \approx 0.57$

Per quanto riguarda il massimo assoluto esso cade in uno dei due estremi.

Essendo:

$$h\left(\frac{1}{2}\right) = e^{\frac{1}{2}} - \ln\frac{1}{2} = \sqrt{e} - (\ln 1 - \ln 2) = \sqrt{e} + \ln 2 \approx 2,3419$$

$$h(1) = e^1 - \ln 1 = e \approx 2,7183$$

si conclude che la funzione assume massimo assoluto in x = 1.