ESAME DI STATO DI LICEO SCIENTIFICO

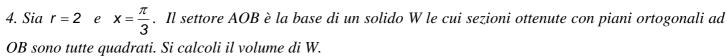
Sessione Ordinaria 2009

CORSO DI ORDINAMENTO

Problema 1

È assegnato il settore circolare AOB di raggio r e ampiezza x (r e x sono misurati, rispettivamente, in metri e radianti).

- 1. Si provi che l'area S compresa fra l'arco e la corda AB è espressa, in funzione di x, da $S(x) = \frac{1}{2}r^2 \cdot (x \operatorname{sen} x) \operatorname{con} x \in [0, 2\pi].$
- 2. Si studi come varia S(x) e se ne disegni il grafico (avendo posto r = 1).
- 3. Si fissi l'area del settore AOB pari a $100\,\mathrm{m}^2$. Si trovi il valore di r per il quale è minimo il perimetro di AOB e si esprima il corrispondente valore di x in gradi sessagesimali (è sufficiente l'approssimazione al grado).



Consideriamo i seguenti due casi:

$$\underline{I^{\circ} \operatorname{caso}}$$
 - L'angolo $\mathbf{X} \in [0, \pi]$

L'area S compresa fra l'arco e la corda AB si ottiene come differenza fra l'area del settore circolare e l'area del triangolo:

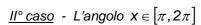
$$S = S_{\substack{\nabla \\ \text{Settore circolare OAB}}} - S_{\substack{\nabla \\ \text{Triangolo OAB}}}$$

Applicando la formula: $S = \frac{1}{2}ab \operatorname{sen} \gamma$ si trova l'area del triangolo:

$$S_{Triangolo\ OAB}^{A} = \frac{1}{2}r \cdot r \cdot sen\ x = \frac{1}{2}r^{2} \cdot sen\ x\ .$$

Mentre l'area del settore circolare è: $S_{\text{Settore OAB}} = \frac{x}{2\pi} \cdot \pi \cdot r^2 = \frac{1}{2}xr^2$.

Pertanto l'area S è data da: $S(x) = \frac{1}{2}r^2 \cdot (x - \sin x)$ con $x \in [0, \pi]$.



L'area S compresa fra l'arco e la corda AB si ottiene come somma fra l'area del settore circolare e l'area del triangolo:

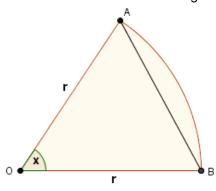
$$S_{Triangolo\ OAB}^{\Lambda} = \frac{1}{2}r \cdot r \cdot sen(2\pi - x) = -\frac{1}{2}r^2 \cdot sen x$$
.

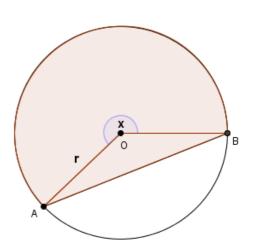
Mentre l'area del settore circolare è sempre:

$$S_{\text{Settore circolare OAB}}^{\nabla} = \frac{x}{2\pi} \cdot \pi \cdot r^2 = \frac{1}{2} x r^2.$$

Pertanto:
$$S(x) = \frac{1}{2}r^2 \cdot (x - \operatorname{sen} x)$$
 con $x \in [\pi, 2\pi]$.

In definitiva l'area S è data da: $S(x) = \frac{1}{2}r^2 \cdot (x - \operatorname{sen} x)$ con $x \in [0, 2\pi]$.





Punto 2

Ponendo r = 1, la funzione da studiare è: $S(x) = \frac{1}{2} \cdot (x - \sin x)$ con $x \in [0, 2\pi]$.

1. Dominio

La funzione, nell'intervallo $[0,2\pi]$, è continua e derivabile.

$$S(0) = \frac{1}{2} \cdot (0 - \text{sen } 0) = 0$$

$$S(2\pi) = \frac{1}{2} \cdot (2\pi - \operatorname{sen} 2\pi) = \pi .$$

2. Simmetrie

La funzione, nell'intervallo $\left[0,2\pi\right]$, presenta una simmetria nel suo punto di flesso $F\left(\pi;\frac{\pi}{2}\right)$.

3. Intersezioni con gli assi

$$\begin{cases} y = \frac{1}{2} \cdot (x - \operatorname{sen} x) & \begin{cases} y = 0 \\ x = 0 \end{cases} \Rightarrow O(0; 0)$$

$$\begin{cases} y = \frac{1}{2} \cdot (x - \operatorname{sen} x) & \frac{1}{2} \cdot (x - \operatorname{sen} x) = 0; \\ y = 0 & \end{cases}$$

$$x - \operatorname{sen} x = 0$$
.

L'equazione è equivalente al sistema:

$$\begin{cases} y = \operatorname{sen} x \\ y = x \end{cases}$$

Dal grafico si evince che le due curve si incontrano soltanto nell'origine, dove la retta y = x risulta tangente alla curva.

Infatti:

D sen
$$x = \cos x$$
; $m_0 = \cos 0 = 1$;
 $y - y_0 = m \cdot (x - x_0)$; $y - 0 = 1 \cdot (x - 0)$; $y = x$.

4. Segno di S(x)

$$S(x) > 0$$
; $x - \sin x > 0$; $x > \sin x$; dal grafico si evince che: $x > \sin x \quad \forall x \in [0, 2\pi]$.

5. Limiti ed asintoti

La funzione non ha asintoti di alcun genere.

6. Derivata prima

$$S'(x) = \frac{1}{2} \cdot (1 - \cos x)$$

7. Zeri della derivata prima

$$S'(x) = 0;$$
 $\frac{1}{2} \cdot (1 - \cos x) = 0;$ $1 - \cos x = 0;$ $\cos x = 1;$ $x = 0;$ $x = 2\pi.$

8. Segno della derivata prima

$$S'(x) > 0;$$
 $\frac{1}{2} \cdot (1 - \cos x) > 0;$ $1 - \cos x > 0;$ $\cos x < 1;$ $\forall x \in]0, 2\pi[$.

La funzione è strettamente crescente $\forall x \in \left]0,2\pi\right[$ mentre agli estremi x=0 e $x=2\pi$ ha la tangente orizzontale .

9. Derivata seconda

$$S''(x) = \frac{1}{2} \operatorname{sen} x$$

10. Zeri della derivata seconda

$$S''(x) = 0$$
; $\frac{1}{2} \operatorname{sen} x = 0$; $\operatorname{sen} x = 0$; $x = \pi$; $x = 2\pi$

11. Segno della derivata seconda

$$S''(x) > 0$$
; $\frac{1}{2}$ sen $x > 0$; sen $x > 0$; $0 < x < \pi$.

La curva volge la concavità verso l'alto nell'intervallo: $(0,\pi)$

La curva volge la concavità verso il basso nell'intervallo: $(\pi, -2\pi)$

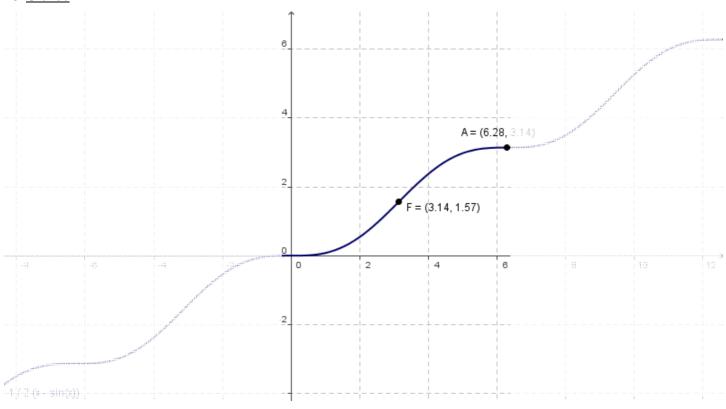
In $x = \pi$ c'è un flesso a tangente obliqua.

L'ordinata del punto di flesso è : $S(\pi) = \frac{1}{2} \cdot (\pi - \operatorname{sen} \pi) = \frac{\pi}{2}$.

12. Massimi e minimi assoluti

La funzione, nell'intervallo $\begin{bmatrix} 0,2\pi \end{bmatrix}$, è limitata sia inferiormente sia superiormente. Il minimo assoluto si ha in: x=0. L'ordinata del punto di minimo assoluto è: y=0. Il massimo assoluto si ha in: $x=2\pi$. L'ordinata del punto di massimo assoluto è: $y=\pi$.

13. Grafico



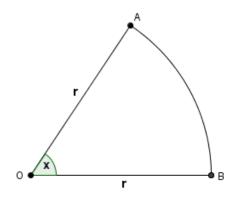
Punto 3

Ponendo
$$S_{\text{Settore circolare OAB}}^{\text{v}} = 100 \text{ m}^2 \text{ si ha: } \frac{1}{2} \text{xr}^2 = 100 \text{ .}$$

da cui si ottiene:
$$xr^2 = 200$$
; $x = \frac{200}{r^2}$.

L'arco
$$\stackrel{\frown}{AB} = \frac{\alpha}{2\pi} \cdot C = \frac{x}{2\pi} \cdot 2\pi r = x \cdot r$$

Essendo
$$x = \frac{200}{r^2}$$
 si ottiene: $\overrightarrow{AB} = x \cdot r = \frac{200}{r^2} \cdot r = \frac{200}{r}$



Il perimetro da rendere minimo ha la seguente espressione: $p(x) = 2r + \frac{200}{r}$ con $r \ge \sqrt{\frac{100}{\pi}}$.

Infatti essendo
$$x = \frac{200}{r^2}$$
 e $0 \le x \le 2\pi$ si ha:
$$\begin{cases} \frac{200}{r^2} \ge 0 \\ \frac{200}{r^2} \le 2\pi \end{cases}$$
 essendo la prima disequazione sempre soddisfatta, occorre

risolvere soltanto la seconda:
$$\frac{200}{r^2} \le 2\pi$$
; $\frac{200 - 2\pi r^2}{r^2} \le 0$; $\frac{2\pi r^2 - 200}{r^2} \ge 0$; essendo il denominatore sempre positivo, basta risolvere 2π $r^2 - 200 \ge 0$; da cui si ottiene: $r \le -\sqrt{\frac{100}{\pi}}$; $r \ge \sqrt{\frac{100}{\pi}}$.

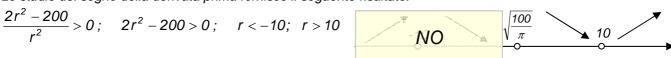
Di queste due, essendo il raggio una quantità positiva, è da considerare soltanto la seconda. Per cui: $r \ge \sqrt{\frac{100}{-}}$.

Calcolando la derivata prima si ottiene:
$$p'(x) = 2 - \frac{200}{r^2} = \frac{2r^2 - 200}{r^2}$$

Essa si annulla per:
$$\frac{2r^2 - 200}{r^2} = 0$$
; $2r^2 - 200 = 0$; $r^2 = 100$; $r = \begin{cases} -10 & \text{non accettabile} \\ +10 & \text{non accettabile} \end{cases}$

Lo studio del segno della derivata prima fornisce il seguente risultato:

$$\frac{2r^2-200}{r^2}>0\;;\quad 2r^2-200>0\;;\quad r<-10;\;\; r>10$$



La funzione risulta decrescente nell'intervallo $\left(\sqrt{\frac{100}{\pi}},\ 10\right)^{-1}$ e crescente nell'intervallo $\left(10,\ +\infty\right)$.

Pertanto ha un minimo assoluto per r = 10 m.

il corrispondente valore di x in gradi sessagesimali è dato da:
$$x = \frac{200}{r^2} = \frac{200}{10^2}$$
 rad = 2 rad = $(2 \cdot 57,3)^\circ = 115^\circ$.

Metodo 2

Il problema poteva essere risolto anche per via elementare:

Il perimetro $p(x) = 2r + \frac{200}{r}$ è la somma di due quantità positive.

Il cui prodotto $2r \cdot \frac{200}{r} = 400$ è costante.

La funzione perimetro, in tal caso, è minima quando i due addendi sono uguali, cioè: $2r = \frac{200}{r}$

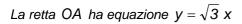
Da cui si ottiene: $2r^2 = 200$; $r = \mp 10$. Scartando la soluzione negativa si ritrova il valore r = 10 m.

Punto 4

Considerando un opportuno sistema di riferimento, con l'origine coincidente con il centro O del settore circolare e il

punto B in B(2;0). Si ha che il punto A ha coordinate: $A(1;\sqrt{3})$.

Il volume è dato dalla somma dei due volumi dei due solidi che vengono a determinarsi nei due intervalli: $\begin{bmatrix} 0,1 \end{bmatrix}$ e $\begin{bmatrix} 1,2 \end{bmatrix}$.



e l'arco $\stackrel{\cap}{AB}$ ha equazione: $y = \sqrt{4 - x^2}$.

Infatti $\stackrel{\frown}{AB}$ è un arco appartenente alla circonferenza: $x^2+y^2=4$.

Pertanto il lato \overline{PQ} del quadrato appartenente allo intervallo [0,1] misura: $\overline{PQ}=\sqrt{3}$ x .

Mentre il lato \overline{RS} del quadrato appartenente allo intervallo $\begin{bmatrix} 1,2 \end{bmatrix}$ misura: $\overline{RS} = \sqrt{4-x^2}$.

In definitiva il volume del solido W è:

$$V = \int_{0}^{1} \left(\sqrt{3} x\right) dx + \int_{1}^{2} \left(\sqrt{4 - x^{2}}\right) dx = \int_{0}^{1} 3x^{2} dx + \int_{1}^{2} \left(4 - x^{2}\right) dx = \left[x^{3}\right]_{0}^{1} + \left[4x - \frac{x^{3}}{3}\right]_{1}^{2} = 0$$

$$= 1 + \left[8 - \frac{8}{3} - \left(4 - \frac{1}{3} \right) \right] = 1 + 8 - \frac{8}{3} - 4 + \frac{1}{3} = 5 - \frac{7}{3} = \frac{5 - 7}{3} = \frac{8}{3}.$$

