Triangolo rettangolo

In un triangolo rettangolo:

• un cateto è uguale al prodotto dell'ipotenusa per il seno dell'angolo opposto al cateto.

$$b = a \cdot sen \beta$$

$$c = a \cdot sen \gamma$$

• un cateto è uguale al prodotto dell'ipotenusa per il coseno dell'angolo adiacente al cateto.

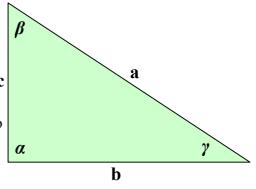
$$b = a \cdot \cos \gamma$$

$$c = a \cdot \cos \beta$$

• un cateto è uguale al prodotto dell'altro cateto per la tangente dell'angolo opposto al cateto.

$$b = c \cdot tg \beta$$

$$c = b \cdot tg \gamma$$



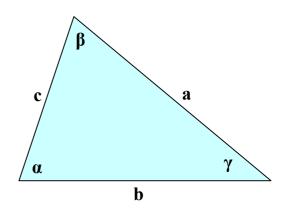
Triangolo qualsiasi

In un triangolo qualsiasi valgono i seguenti tre teoremi :

Teorema dei Seni

$$\frac{a}{\operatorname{sen}\alpha} = \frac{b}{\operatorname{sen}\beta} = \frac{c}{\operatorname{sen}\gamma} = 2R$$

(R = raggio della circonferenza circoscritta al triangolo)



Teorema di Carnot

$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$	$a = \sqrt{b^2 + c^2 - 2bc\cos\alpha}$	$\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}$
$b^2 = a^2 + c^2 - 2ac \cdot \cos\beta$	$b = \sqrt{a^2 + c^2 - 2ac \cdot \cos\beta}$	$\cos\beta = \frac{a^2 + c^2 - b^2}{2ac}$
$c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$	$c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \gamma}$	$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$

Teorema delle proiezioni

$$a = b \cdot \cos \gamma + c \cdot \cos \beta$$

$$b = a \cdot \cos \gamma + c \cdot \cos \alpha$$

$$c = a \cdot \cos \beta + b \cdot \cos \alpha$$

1

Triangolo rettangolo

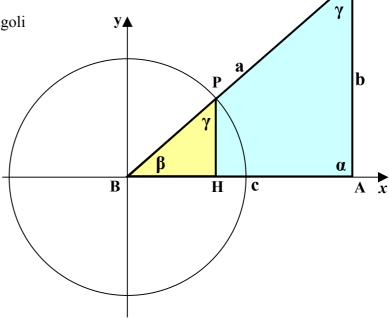
I due triangoli OPH e ABC sono simili, infatti:

- l'angolo β è in comune ai due triangoli,

- $l'angolo B\hat{H}P = B\hat{A}C = 90^{\circ}$

Pertanto i lati corrispondenti dei due triangoli sono proporzionali:

- 1. BH: AB = BP: BC e cioè $\cos \beta$: cateto c = 1: ipotenusa cateto c = ipotenusa $\cdot \cos \beta$
- 2. PH: AC = BP : BC e cioè $sen\beta : cateto b = 1 : ipotenusa$ cateto $b = ipotenusa \cdot sen\beta$
- 3. BH: AB = PH: AC e cioè $\cos \beta$: cateto c = $\sin \beta$: cateto b cateto b = $\frac{\sin \beta}{\cos \beta}$ · cateto c cateto b = cateto c · tg β



 $ma \ cos \ \beta = sen \gamma \quad , \quad sen \beta = cos \ \gamma \quad e \quad tg \beta = Cotg \ \gamma = \frac{1}{tg \gamma} \ perché \ angoli \ complementari, \ quindi:$

la relazione (1) cateto $c = ipotenusa \cdot cos \beta$ diventa cateto $c = ipotenusa \cdot sen \gamma$

la relazione (2) cateto $b = ipotenusa \cdot sen\beta$ diventa cateto $b = ipotenusa \cdot cos \gamma$

la relazione (3) cateto $b = \text{cateto } c \cdot \text{tg}\beta$ diventa cateto $b = \text{cateto } c \cdot \frac{1}{\text{tg}\gamma}$

da cui si ha: cateto $c = cateto b \cdot tg\gamma$

Concludendo si è ottenuto:

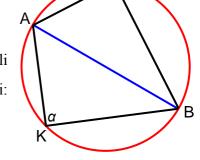
cateto $b = ipotenusa \cdot sen\beta$	cateto $b = ipotenusa \cdot cos \gamma$	cateto $b = \text{cateto } c \cdot \text{tg}\beta$		
cateto $c = ipotenusa \cdot sen\gamma$	cateto $c = ipotenusa \cdot cos \beta$	cateto $c = cateto b \cdot tg\gamma$		
Che equivale a scrivere				
Un cateto è uguale al prodotto dell'ipotenusa per il seno dell'angolo opposto al cateto.	Un cateto è uguale al prodotto dell'ipotenusa per il coseno dell'angolo adiacente al cateto.	Un cateto è uguale al prodotto dell'altro cateto per la tangente dell'angolo opposto al cateto.		

Teorema della corda

La lunghezza di una corda di una circonferenza è uguale al prodotto del diametro per il seno di uno qualunque degli angoli alla circonferenza che insistono su uno dei due archi determinati dalla corda stessa.

Dimostrazione

I° Caso - la corda coincide con il diametro (AB = 2r) gli archi $\stackrel{\frown}{AB}$ sottesi dalla corda sono due semicirconferenze, gli angoli alla circonferenza che insistono su tali archi sono retti e quindi: $sen \alpha = 1$. Perciò risulta: $AB = 2r \cdot sen \alpha = 2r \cdot 1 = 2r$



II° Caso - la corda non coincide con il diametro ($AB \neq 2r$)

Sia AM il diametro. Il triangolo ABM è rettangolo in B.

Pertanto, per i teoremi sul triangolo rettangolo, risulta:

$$AB = 2 r \operatorname{sen} AMB \quad (I)$$

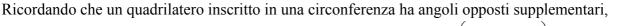
Sia H un punto qualsiasi dell'arco $\stackrel{\frown}{AB}$ contenente M.

Siccome incidono sullo stesso arco, risulta che: $\overrightarrow{AMB} = \overrightarrow{AHB}$.

Pertanto sostituendo tale uguaglianza nella (I) si ha:

$$AB = 2 r \operatorname{sen} AHB (II)$$

Sia K un punto qualsiasi dell'arco $\stackrel{\frown}{AB}$ non contenente M.



si ha:
$$\overrightarrow{AKB} = 180^{\circ} - \overrightarrow{AHB}$$
. Di conseguenza si ha: $sen \overrightarrow{AKB} = sen \left(180 - \overrightarrow{AHB}\right) = sen \overrightarrow{AHB}$.

Sostituendo tale uguaglianza nella (II) si ottiene: AB = 2 r sen AKB.

Teorema delle proiezioni (dimostrazione)

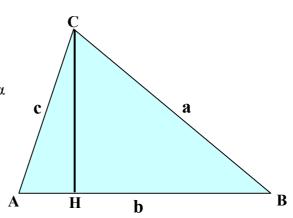
<u>I° Caso – ABC è un triangolo acutangolo</u>

Nel triangolo rettangolo ACH si ha : $AH = c \cdot \cos \alpha$ Nel triangolo rettangolo BCH si ha : $BH = a \cdot \cos \gamma$ Pertanto il lato $b = AB = BH + AH = a \cdot \cos \gamma + c \cdot \cos \alpha$

In definitiva $\mathbf{b} = \mathbf{a} \cdot \mathbf{cos} \gamma + \mathbf{c} \cdot \mathbf{cos} \alpha$

Analogamente le altre due formule :

$$a = b \cdot \cos \gamma + c \cdot \cos \beta$$
$$c = a \cdot \cos \beta + b \cdot \cos \alpha$$



<u>II° Caso – ABC è un triangolo ottusangolo</u>

Nel triangolo rettangolo ACH si ha : AH = $b \cdot \cos \alpha$

Nel triangolo rettangolo BCH si ha:

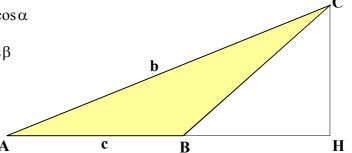
$$BH = a \cdot \cos(180^{\circ} - \beta) = a \cdot (-\cos\beta) = -a\cos\beta$$

Pertanto c = AB = AH - BH =

=
$$b \cdot \cos \alpha - (-a \cos \beta) = b \cdot \cos \alpha + a \cos \beta$$

In definitive $c = a \cdot \cos \beta + b \cdot \cos \alpha$

Per le altre due formule si procede analogamente ai casi precedenti.



Teorema di Carnot (dimostrazione)

Dalle formule del Teorema delle Proiezioni:

$$\mathbf{a} = \mathbf{b} \cdot \mathbf{cos} \gamma + \mathbf{c} \cdot \mathbf{cos} \beta$$
 Moltiplichiamo per a
$$\mathbf{a}^2 = \mathbf{ab} \cdot \mathbf{cos} \gamma + \mathbf{ac} \cdot \mathbf{cos} \beta$$

$$\mathbf{b} = \mathbf{a} \cdot \mathbf{cos} \gamma + \mathbf{c} \cdot \mathbf{cos} \alpha$$
 Moltiplichiamo per -b $-\mathbf{b}^2 = -\mathbf{ab} \cdot \mathbf{cos} \gamma - \mathbf{bc} \cdot \mathbf{cos} \alpha$

$$\mathbf{c} = \mathbf{a} \cdot \cos \beta + \mathbf{b} \cdot \cos \alpha$$
 Moltiplichiamo per $-\mathbf{c}$ $-\mathbf{c}^2 = -\mathbf{a} \cdot \cos \beta - \mathbf{b} \cdot \mathbf{c} \cdot \cos \alpha$

Sommando membro a membro si ottiene:

$$a^2 - b^2 - c^2 = ab \cdot eos \gamma + ac \cdot eos \beta - ab \cdot eos \gamma - bc \cdot cos \alpha - ac \cdot eos \beta - bc \cdot cos \alpha$$
;

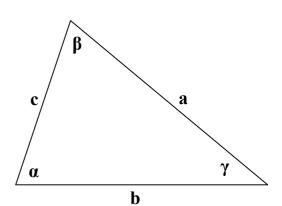
Cioè:
$$a^2 - b^2 - c^2 = -2bc \cdot \cos \alpha$$
 e in definitiva $a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$

Si procede in modo analogo per le altre due formule :

$$b^2 = a^2 + c^2 - 2ac \cdot \cos \beta$$
 e $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$

Teorema dei Seni (dimostrazione)

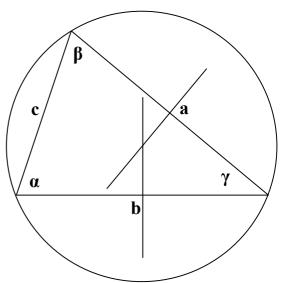
$$\frac{a}{sen\alpha} = \frac{b}{sen\beta} = \frac{c}{sen\gamma} = 2R \qquad (R = raggio \ della \ circonferenza \ circoscritta \ al \ triangolo\)$$



Dimostrazione 1

1. Si costruisce la circonferenza circoscritta al triangolo. Si trova il punto medio del lato **a** e si traccia una perpendicolare al lato **a** (asse del lato **a**); si trova il punto medio del lato **b** e si traccia una perpendicolare al lato **b** (asse del lato **b**); il punto di incontro dei due assi **O**, è il *circocentro*, centro della circonferenza circoscritta al triangolo ABC;

2. Si costruisce la circonferenza circoscritta al triangolo. Centro del compasso nel punto **O** ed apertura del compasso fino ad un vertice del triangolo si traccia la circonferenza;

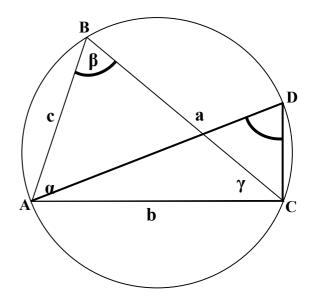


3. Si traccia il diametro **AD** della circonferenza. Il triangolo **ACD** è rettangolo in **C**, perché inscritto in una semicirconferenza;

pertanto
$$AD = \frac{b}{\operatorname{sen} \hat{D}}$$

ma l'angolo $\hat{D} = \beta$ perché sottendono lo stesso arco; mentre AD =2R;

In definitiva si ha che: $2R = \frac{b}{\sin \beta}$

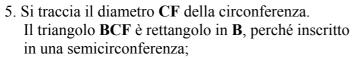


4. Si traccia il diametro **BE** della circonferenza. Il triangolo **ABE** è rettangolo in **A**, perché inscritto in una semicirconferenza;

pertanto BE =
$$\frac{c}{\text{sen } \hat{E}}$$

ma l'angolo $\hat{E} = \gamma$ perché sottendono lo stesso arco; mentre BE =2R;

In definitiva si ha che:
$$2R = \frac{c}{\sin \gamma}$$



pertanto
$$CF = \frac{a}{\operatorname{sen} \hat{F}}$$

ma l'angolo $\hat{F} = \alpha$ perché sottendono lo stesso arco; mentre CF =2R;

In definitiva si ha che:
$$2R = \frac{a}{\sec \alpha}$$

6. Riunendo le tre relazioni trovate si ottiene:

$$\frac{a}{\text{sen }\alpha} = \frac{b}{\text{sen}\beta} = \frac{c}{\text{seny}} = 2R$$

Dimostrazione 2

Si costruisce la circonferenza circoscritta al triangolo.

Per il teorema della corda si ha:

$a = 2 r \operatorname{sen} \alpha$	Dalle quali si ottiene:	$\frac{a}{\operatorname{sen}\alpha} = 2r$
$b=2r \operatorname{sen} \beta$		$\frac{b}{\operatorname{sen}\beta}=2r$
$c = 2 r \operatorname{sen} \gamma$		$\frac{c}{\operatorname{sen} \gamma} = 2 r$

Riunendo in una unica relazione le tre uguaglianze si ha:

$$\frac{a}{sen\alpha} = \frac{b}{sen\beta} = \frac{c}{sen\gamma} = 2r$$

