Liceo Scientifico "G. Galilei" Trebisacce Anno Scolastico 2011-2012

Prova di Matematica: La retta + Pitagora e Euclide

	9	28.03.2012
Alunno:	Classe: 2 C	prof. Mimmo Corrado

A. Dato il triangolo di vertici: A(7;-2), B(-2;1), C(6;5):

- 1. determina il perimetro
- 2. determina l'area (senza utilizzare la formula dell'area)
- 3. determina le coordinate dell'ortocentro T
- 4. determina le coordinate del circocentro E
- 5. determina le coordinate del baricentro G (senza utilizzare la formula del baricentro)
- 6. verifica che i tre punti T, E, G sono allineati
- 7. determina il quarto vertice del parallelogramma, i cui primi tre vertici sono i punti A, B e C
- 8. Il triangolo $A^IB^IC^I$ simmetrico del triangolo ABC rispetto al punto V(-1;3).
- B. Sia ABCD un trapezio, di base maggiore AB e base minore CD. Indica con M, N e T, rispettivamente, i punti medi di AD, DC e CB. La retta NM incontra la retta AB in P e la retta NT incontra la retta AB in Q. Dimostra che il trapezio ABCD e il triangolo PQN sono equivalenti.
- C. In un triangolo rettangolo un cateto è i $\frac{5}{4}$ della sua proiezione sull'ipotenusa. Sapendo che il perimetro del triangolo è 24 cm, determina l'area del triangolo.

	Valutazione		Eserc	izio	A1	A.	2 A3	3 A4	A5	A6	A7	A8	В	С	Totale]
			Pur	nti	8	8	8	8	8	4	8	8	8	12	80]
Punti	0 - 3	4 - 8	9 - 13	14 - 1	20	- 2 5	26 - 31	32 - 37	38 - 43	44 - 49	50 - 55	56 - 61	62 - 67	68 - 72	73 - 76	77 - 80
Voto	2	3	3 1/2	4	4	1/2	5	5½	6	6 1/2	7	7 1/2	8	8 1/2	9	10

Liceo Scientifico "G. Galilei" Trebisacce Anno Scolastico 2011-2012

Prova di Matematica: La retta + Pitagora e Euclide

		28.03.2012
Alunno:	Classe: 2 (prof. Mimmo Corrado

A. Dato il triangolo di vertici: A(7;-2), B(-2;1), C(6;5):

- 1. determina il perimetro
- 2. determina l'area (senza utilizzare la formula dell'area)
- 3. determina le coordinate dell'ortocentro T
- 4. determina le coordinate del circocentro E
- 5. determina le coordinate del baricentro G (senza utilizzare la formula del baricentro)
- 6. verifica che i tre punti T, E, G sono allineati
- 7. determina il quarto vertice del parallelogramma, i cui primi tre vertici sono i punti A, B e C
- 8. disegna il triangolo $A^IB^IC^I$ simmetrico del triangolo ABC rispetto al punto V(-1;3).
- B. Sia ABCD un trapezio, di base maggiore AB e base minore CD. Indica con M, N e T, rispettivamente, i punti medi di AD, DC e CB. La retta NM incontra la retta AB in P e la retta NT incontra la retta AB in Q. Dimostra che il trapezio ABCD e il triangolo PQN sono equivalenti.
- C. In un triangolo rettangolo un cateto è i $\frac{5}{4}$ della sua proiezione sull'ipotenusa. Sapendo che il perimetro del triangolo è 24 cm, determina l'area del triangolo.

	Valutazione		Eserc	CIZIO F	11 A	2 A:	3 A4	A5	A6	A/	A8	В	C	Totale	
			Pur	nti	8 8	8 8	8	8	4	8	8	8	12	80	
Punti	0 - 3	4 - 8	9 - 13	14 - 19	20 - 25	26 - 31	32 - 37	38 - 43	44 - 49	50 - 55	56 - 61	62 - 67	68 - 72	73 - 76	77 - 80
Voto	2	3	3 ½	4	4 1/2	5	5½	6	6 1/2	7	7 ½	8	8 1/2	9	10

Soluzione

Dato il triangolo di vertici: A(7;-2), B(-2;1), C(6;5), determina:

1. Perimetro

Il perimetro è dato dalla somma dei tre lati:

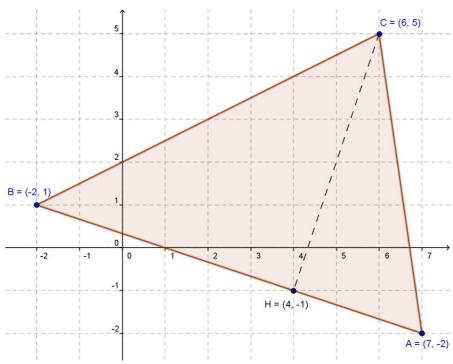
$$\overline{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} = \sqrt{(7+2)^2 + (-2-1)^2} = \sqrt{81+9} = \sqrt{90} = 3\sqrt{10}$$

$$\overline{BC} = \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2} = \sqrt{(-2-6)^2 + (1-5)^2} = \sqrt{64+16} = \sqrt{80} = 4\sqrt{5}$$

$$\overline{AC} = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} = \sqrt{(7-6)^2 + (-2-5)^2} = \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$$

Pertanto il perimetro del triangolo è:

$$2p = \overline{AB} + \overline{BC} + \overline{AC} = 3\sqrt{10} + 4\sqrt{5} + 5\sqrt{2}$$



2. Area

Per il calcolo dell'area del triangolo occorre determinare la misura dell'altezza CH.

L'altezza CH rappresenta la distanza del punto C dalla retta AB.

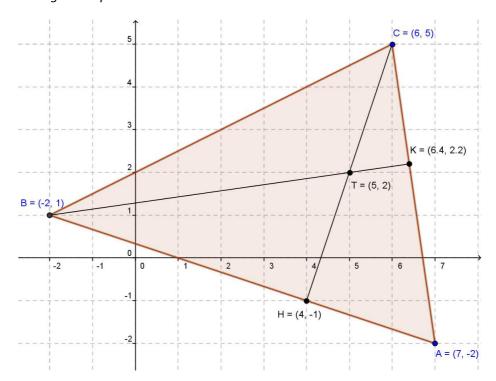
L'equazione della retta AB è data da:

$$\frac{y - y_B}{y_A - y_B} = \frac{x - x_B}{x_A - x_B}; \qquad \frac{y - 1}{-2 - 1} = \frac{x + 2}{7 + 2}; \qquad \frac{y - 1}{-3} = \frac{x + 2}{9}; \qquad -3 \cdot (y - 1) = x + 2; \qquad x + 3y - 1 = 0$$

$$L'altezza \quad CH = \frac{|ax_C + by_C + c|}{\sqrt{a^2 + b^2}} = \frac{|1 \cdot 6 + 3 \cdot 5 - 1|}{\sqrt{1^2 + 3^2}} = \frac{|20|}{\sqrt{10}} = \frac{20}{\sqrt{10}}$$

L'area del triangolo è: $\mathbf{S} = \frac{1}{2}\overline{AB} \cdot \overline{CH} = \frac{1}{2} \cdot 3\sqrt{10} \cdot \frac{20}{\sqrt{10}} = \mathbf{30}$.

3. L'ortocentro di un triangolo è il punto d'incontro delle tre altezze.



Il coefficiente angolare della retta AB è:

$$m_{AB} = \frac{y_A - y_B}{x_A - x_B} = \frac{-2 - 1}{7 + 2} = -\frac{3}{9} = -\frac{1}{3}$$

La retta CH perpendicolare alla retta AB ha coefficiente angolare: $m_{CH}=-rac{1}{m_{AB}}=+3$.

L'equazione dell'altezza CH è: $y-y_C=m_{CH}\left(x-x_C\right)$; $y-5=3\left(x-6\right)$; y=3x-13

Il coefficiente angolare della retta AC è:

$$m_{AC} = \frac{y_A - y_C}{x_A - x_C} = \frac{-2 - 5}{7 - 6} = -7$$

La retta BK perpendicolare alla retta AC ha coefficiente angolare: $m_{BK}=-rac{1}{m_{AC}}=+rac{1}{7}$.

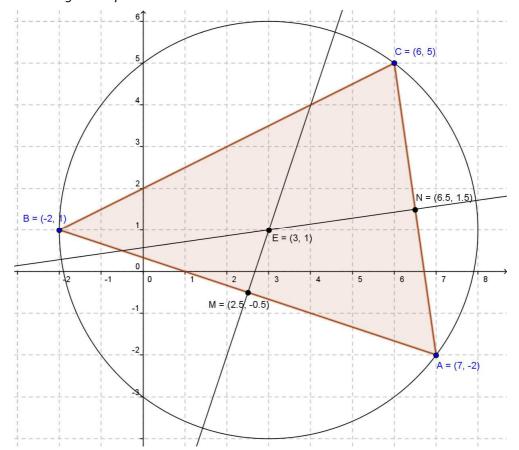
L'equazione dell'altezza BK è: $y-y_B=m_{BK}\left(x-x_B\right); \qquad y-1=\frac{1}{7}\left(x+2\right); \qquad y=\frac{1}{7}x+\frac{9}{7}$

Le coordinate dell'ortocentro T, punto di incontro delle due altezze CH e BK, si ottengono risolvendo il sistema:

$$\begin{cases} y = 3x - 13 \\ y = \frac{1}{7}x + \frac{9}{7} \end{cases} \qquad \begin{cases} \frac{1}{7}x + \frac{9}{7} = 3x - 13 \\ - \end{cases} \qquad \begin{cases} x + 9 = 21x - 91 \\ - \end{cases} \qquad \begin{cases} 20x = 100 \\ y = 3 \cdot 5 - 13 \end{cases} \qquad \begin{cases} x = 5 \\ y = 3 \cdot 5 - 13 \end{cases} \qquad \begin{cases} x = 5 \\ y = 2 \end{cases}$$

Pertanto l'ortocentro ha coordinate: T(5; 2).

4. Il circocentro di un triangolo è il punto d'incontro dei tre assi.



Il punto medio M del lato AB ha coordinate:

$$x_{M} = \frac{x_{A} + x_{B}}{2} = \frac{7 - 2}{2} = \frac{5}{2}$$

$$y_{M} = \frac{y_{A} + y_{B}}{2} = \frac{-2 + 1}{2} = -\frac{1}{2}$$

$$M\left(\frac{5}{2}; -\frac{1}{2}\right)$$

Il coefficiente angolare della retta AB è: $m_{AB}=-rac{1}{3}$

L'equazione dell'asse del segmento AB è:

$$y - y_M = -\frac{1}{m_{AB}}(x - x_M);$$
 $y + \frac{1}{2} = 3(x - \frac{5}{2});$ $y = 3x - 8$

Il punto medio N del lato AC ha coordinate:

$$x_N = \frac{x_A + x_C}{2} = \frac{7+6}{2} = \frac{13}{2}$$

$$y_N = \frac{y_A + y_C}{2} = \frac{-2+5}{2} = \frac{3}{2}$$

$$\Rightarrow N\left(\frac{13}{2}; \frac{3}{2}\right)$$

Il coefficiente angolare della retta AC è già stato determinato in precedenza: $m_{AC}=-7$

L'equazione dell'asse del segmento AC è:

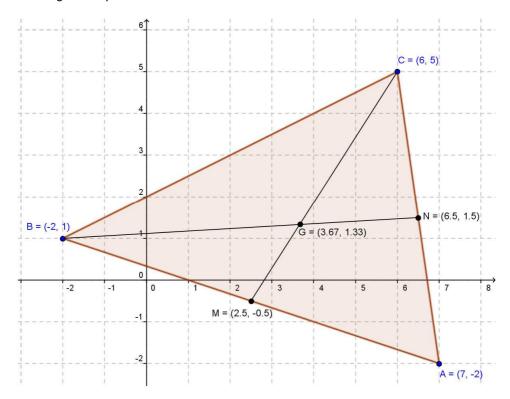
$$y - y_N = -\frac{1}{m_{AC}}(x - x_N);$$
 $y - \frac{3}{2} = \frac{1}{7}(x - \frac{13}{2});$ $y = \frac{1}{7}x + \frac{4}{7}$

Le coordinate del circocentro E, punto di incontro dei due assi, si ottengono risolvendo il sistema:

$$\begin{cases} y = 3x - 8 \\ y = \frac{1}{7}x + \frac{4}{7} \end{cases} \qquad \begin{cases} \frac{1}{7}x + \frac{4}{7} = 3x - 8 \\ - \end{cases} \qquad \begin{cases} x + 4 = 21x - 56 \\ - \end{cases} \qquad \begin{cases} 20x = 60 \\ y = 3 \cdot 3 - 8 \end{cases} \qquad \begin{cases} x = 3 \\ y = 1 \cdot 3 \cdot 3 - 8 \end{cases} \qquad \begin{cases} x = 3 \\ - \cdot \end{cases} \qquad \begin{cases}$$

Pertanto, il circocentro ha coordinate: E(3; 1).

5. Il baricentro di un triangolo è il punto d'incontro delle tre mediane.



Il punto medio M del lato AB ha coordinate: $M\left(\frac{5}{2}; -\frac{1}{2}\right)$

L'equazione della mediana CM é:

$$\frac{y - y_M}{y_C - y_M} = \frac{x - x_M}{x_C - x_M}; \qquad \frac{y + \frac{1}{2}}{5 + \frac{1}{2}} = \frac{x - \frac{5}{2}}{6 - \frac{5}{2}}; \qquad \frac{y + \frac{1}{2}}{\frac{11}{2}} = \frac{x - \frac{5}{2}}{\frac{7}{2}}; \qquad \frac{2}{11} \cdot \left(y + \frac{1}{2}\right) = \frac{2}{7} \cdot \left(x - \frac{5}{2}\right)$$

$$\frac{2}{11}y + \frac{1}{11} = \frac{2}{7}x - \frac{5}{7}; \qquad 14y + 7 = 22x - 55; \qquad 22x - 14y - 62 = 0; \qquad 11x - 7y - 31 = 0$$

Il punto medio N del lato AC ha coordinate: $N\left(\frac{13}{2}; \frac{3}{2}\right)$

L'equazione della mediana BN è:

$$\frac{y - y_N}{y_B - y_N} = \frac{x - x_N}{x_B - x_N}; \qquad \frac{y - \frac{3}{2}}{1 - \frac{3}{2}} = \frac{x - \frac{13}{2}}{-2 - \frac{13}{2}}; \qquad \frac{y - \frac{3}{2}}{-\frac{1}{2}} = \frac{x - \frac{13}{2}}{-\frac{17}{2}} \qquad -2 \cdot \left(y - \frac{3}{2}\right) = -\frac{2}{17} \cdot \left(x - \frac{13}{2}\right)$$

$$-2y + 3 = -\frac{2}{17}x + \frac{13}{17}; \qquad -2y = -\frac{2}{17}x + \frac{13}{17} - 3 \qquad y = \frac{1}{17}x + \frac{19}{17}$$

Le coordinate del baricentro G, punto di incontro delle due mediane CM e BN, si ottengono risolvendo il sistema:

5

$$\begin{cases} 11x - 7y - 31 = 0 \\ y = \frac{1}{17}x + \frac{19}{17} \end{cases} \qquad \begin{cases} 11x - 7\left(\frac{1}{17}x + \frac{19}{17}\right) - 31 = 0 \\ \end{cases} \begin{cases} 180x = 660 \\ - \end{cases} \qquad \begin{cases} x = \frac{660}{180} \\ - \end{cases} \qquad \begin{cases} x = \frac{11}{3} \\ y = \frac{1}{17} \cdot \frac{11}{3} + \frac{19}{17} = \frac{68}{51} \end{cases} \qquad \begin{cases} x = \frac{11}{3} \\ y = \frac{4}{3} \end{cases}$$

Pertanto il baricentro ha coordinate: $G\left(\frac{11}{3}; \frac{4}{3}\right)$

Applicando la formula :
$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{7 - 2 + 6}{3} = \frac{11}{3}$$

$$y_G = \frac{y_A + y_B + y_C}{3} = \frac{-2 + 1 + 5}{3} = \frac{4}{3}$$

6. Per verificare che i tre punti T, E, G sono allineati è sufficiente applicare la formula:

$$\frac{y_G - y_T}{y_F - y_T} = \frac{x_G - x_T}{x_F - x_T}; \qquad \frac{\frac{4}{3} - 2}{1 - 2} = \frac{\frac{11}{3} - 5}{3 - 5}; \qquad \frac{-\frac{2}{3}}{-1} = \frac{-\frac{4}{3}}{-2}; \qquad \frac{2}{3} = \frac{2}{3}.$$

$$\frac{\frac{4}{3}-2}{1-2} = \frac{\frac{11}{3}-5}{3-5}$$

$$\frac{-\frac{2}{3}}{-1} = \frac{-\frac{4}{3}}{-2}$$

$$\frac{2}{3} = \frac{2}{3}$$

Oppure occorre verificare che: $m_{TE} = m_{TG}$.

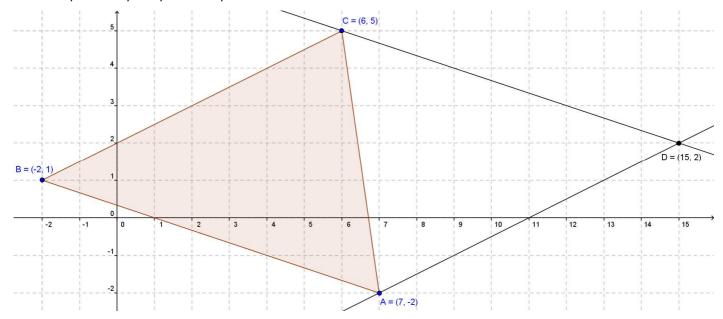
$$m_{TE} = \frac{y_T - y_E}{x_T - x_E} = \frac{2 - 1}{5 - 3} = \frac{1}{2}$$

$$m_{TG} = \frac{y_T - y_G}{x_T - x_G} = \frac{2 - \frac{4}{3}}{5 - \frac{11}{3}} = \frac{\frac{2}{3}}{\frac{4}{3}} = \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$$

7. Per determinare il quarto vertice del parallelogramma occorre trovare le equazioni delle due rette r ed s:

La retta r passante per il punto C e parallela al lato AB

La retta s passante per il punto A e parallela al lato BC



La retta r passante per il punto C e parallela al lato AB ha equazione:

$$y - y_C = m_{AB} (x - x_C);$$
 $y - 5 = -\frac{1}{3} (x - 6);$ $y = -\frac{1}{3} x + 7$

$$y = -\frac{1}{3}x + 7$$

La retta s passante per il punto A e parallela al lato BC

$$y - y_A = m_{BC}(x - x_A);$$
 $y + 2 = \frac{1}{2}(x - 7);$ $y = \frac{1}{2}x - \frac{11}{2}$

Le coordinate del quarto vertice D del parallelogramma si ottiene risolvendo il sistema:

$$\begin{cases} y = -\frac{1}{3}x + 7 \\ y = \frac{1}{2}x - \frac{11}{2} \end{cases} \qquad \begin{cases} \frac{1}{2}x - \frac{11}{2} = -\frac{1}{3}x + 7 \\ -\frac{1}{3}x - \frac{11}{3} \end{cases} \qquad \begin{cases} 3x - 33 = -2x + 42 \\ -\frac{1}{3}x - \frac{11}{3} \end{cases} \qquad \begin{cases} 5x = 75 \\ y = 2 \end{cases} \Rightarrow D(15; 2)$$

Applicando le formule, come verifica, si ottiene :

$$x_D + x_B = x_A + x_C$$

$$x_D - 2 = 7 + 6$$

 $y_D + 1 = 5 - 2$

$$x_D+x_B=x_A+x_C$$
 $x_D-2=7+6$ $x_D=15$ $y_D+y_B=y_A+y_C$ $y_D+1=5-2$ $y_D=2$ lo stesso risultato .

7. Per determinare il triangolo $A^IB^IC^I$ simmetrico del triangolo ABC rispetto al punto V(-1;3) occorre utilizzare le equazioni della simmetria centrale.

Le equazioni della simmetria centrale si ottengono utilizzando le formule del punto medio di un segmento:

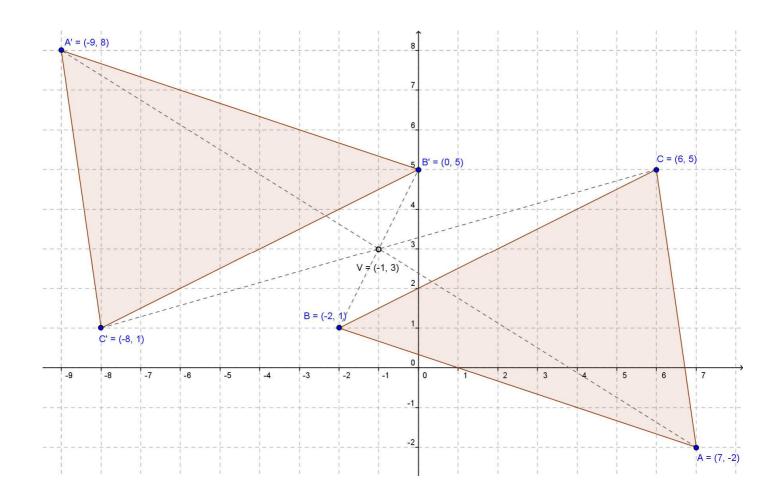
$$\begin{cases} x_V = \frac{x_A + x_{A^I}}{2} \\ y_V = \frac{y_A + y_{A^I}}{2} \end{cases}$$
 da cui si ottengono:
$$\begin{cases} x_{A^I} = 2x_V - x_A \\ y_{A^I} = 2y_V - y_A \end{cases}$$

Applicando le equazioni della simmetria centrale si ottengono:

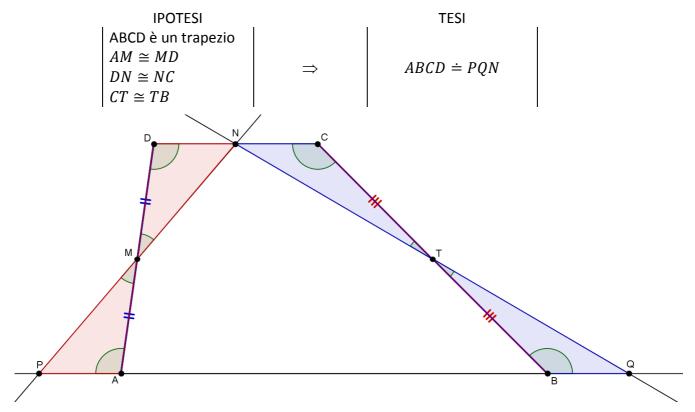
$$\begin{cases} x_{A^I} = 2 \cdot (-1) - 7 = -9 \\ y_{A^I} = 2 \cdot 3 + 2 = 8 \end{cases} \qquad \begin{cases} x_{B^I} = 2 \cdot (-1) + 2 = 0 \\ y_{B^I} = 2 \cdot 3 - 1 = 5 \end{cases} \qquad \begin{cases} x_{C^I} = 2 \cdot (-1) - 6 = -8 \\ y_{C^I} = 2 \cdot 3 - 5 = 1 \end{cases}$$

$$\begin{cases} x_{B^I} = 2 \cdot (-1) + 2 = 0 \\ y_{P^I} = 2 \cdot 3 - 1 = 5 \end{cases}$$

$$\begin{cases} x_{C^I} = 2 \cdot (-1) - 6 = -8 \\ y_{C^I} = 2 \cdot 3 - 5 = 1 \end{cases}$$



B. Sia ABCD un trapezio, di base maggiore AB e base minore CD. Indica con M, N e T, rispettivamente, i punti medi di AD, DC e CB. La retta NM incontra la retta AB in P e la retta NT incontra la retta AB in Q. Dimostra che il trapezio ABCD e il triangolo PQN sono equivalenti.



Il trapezio ABCD e il triangolo PQN sono equivalenti perché sono equicomposti:

 $ABCD \doteq ABTNM + DMN + NCT$

 $PQN \doteq ABTNM + PMA + BTQ$

I triangoli DMN e PMA sono congruenti per il II C.C.T. Infatti:

 $MD \cong AM$ per ipotesi

 $N\widehat{M}D \cong P\widehat{M}A$ perché opposti al vertice

 $M\widehat{D}N \cong M\widehat{A}P$ perché alterni interni .

I triangoli NCT e BTQ sono congruenti per il II C.C.T. Infatti:

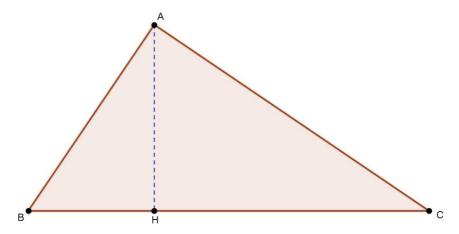
 $CT \cong BT$ per ipotesi

 $C\widehat{T}N \cong B\widehat{T}Q$ perché opposti al vertice

 $N\hat{C}T \cong Q\hat{B}T$ perché alterni interni.

C. In un triangolo rettangolo un cateto è i $\frac{5}{4}$ della sua proiezione sull'ipotenusa. Sapendo che il perimetro del triangolo è 24 cm, determina l'area del triangolo.

Soluzione



Ponendo
$$\overline{HC} = x \implies \overline{AC} = \frac{5}{4}x$$

Applicando il I° T di Euclide si ha:
$$\overline{AC^2} = \overline{BC} \cdot \overline{HC}$$
 \Rightarrow $\overline{BC} = \frac{\overline{AC^2}}{\overline{HC}} = \frac{\frac{25}{16}x^2}{x} = \frac{25}{16}x$

Inoltre
$$\overline{AB} = \sqrt{\overline{BC}^2 - \overline{AC}^2} = \sqrt{\frac{625}{256}x^2 - \frac{25}{16}x^2} = \sqrt{\frac{625 - 400}{256}x^2} = \sqrt{\frac{225}{256}x^2} = \frac{15}{16}x$$
.

Utilizzando il perimetro 2p = 24 cm si ottiene:

$$\overline{AB} + \overline{BC} + \overline{AC} = 24$$
; $\frac{15}{16}x + \frac{25}{16}x + \frac{5}{4}x = 24$; $15x + 25x + 20x = 384$

$$60x = 384; x = \frac{384}{60} = \frac{32}{5}$$

Quindi:
$$\overline{AC} = \frac{5}{4} \cdot \frac{32}{5} = 8 \text{ cm}$$
 $\overline{AB} = \frac{15}{16} \cdot \frac{32}{5} = 6 \text{ cm}$

Pertanto l'area del triangolo è:
$$S_{ABC} = \frac{1}{2} \overline{AB} \cdot \overline{AC} = \left(\frac{1}{2} \cdot 6 \cdot 8\right) cm^2 = 24 \ cm^2$$
.