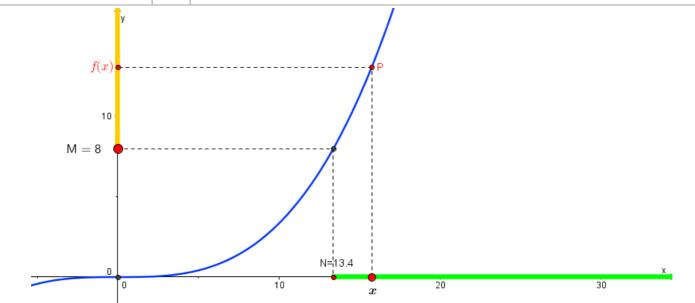
LIMITE INFINITO PER UNA FUNZIONE ALL'INFINITO

 $\lim_{x \to +\infty} f(x) = +\infty \iff$

 $\forall M > 0 \quad \exists N > 0 \quad / \quad f(x) > M, \quad \forall x > N$

Se, comunque si scelga un intorno $I^{y}_{+\infty} =]M$, $+\infty[$ (scelto grande quanto si vuole), si può determinare in corrispondenza di esso un intorno $I^{x}_{+\infty} =]N$, $+\infty[$ tale che $\forall x \in I^{x}_{+\infty}$, si ha che $f(x) \in I^{y}_{+\infty}$.



Esempio

$$\lim_{x \to +\infty} x^3 = +\infty \quad \Longleftrightarrow$$

$$\forall M > 0 \quad \exists N > 0 \quad / \quad x^3 > M, \quad \forall x > N$$

Occorre verificare che la disequazione $x^3 > M$ è soddisfatta per ogni x appartenente ad un intorno $I_{+\infty}$.

Risolviamo pertanto la disequazione: $x^3 > M$:

Applicando la radice cubica ad entrambi i membri, si ottiene: $x > \sqrt[3]{M}$.

Essa rappresenta un intorno di $+\infty$: $I_{+\infty}^{x} = \sqrt[3]{M}$, $+\infty$ dove $N = \sqrt[3]{M}$

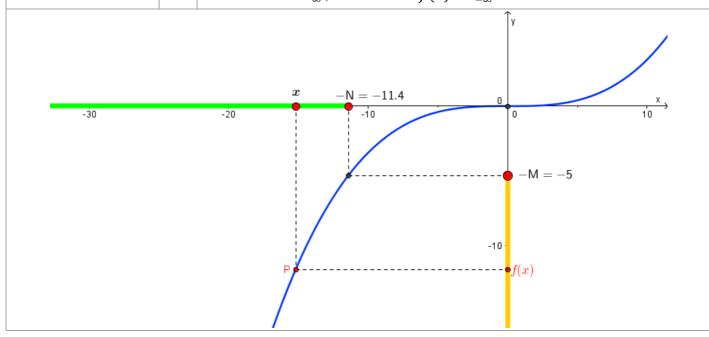
Il limite è pertanto, verificato.

LIMITE INFINITO PER UNA FUNZIONE ALL'INFINITO

$$\lim_{x \to -\infty} f(x) = -\infty \iff$$

$$\forall M > 0 \quad \exists I_{-\infty} =]-N, +\infty[\quad / \quad f(x) < M, \quad \forall x < -N$$

Se, comunque si scelga un intorno $I_{-\infty}^y =]-\infty$, -M[(scelto grande quanto si vuole), si può determinare in corrispondenza di esso un intorno $I_{-\infty}^x =]-\infty$, -N[tale che $\forall x \in I_{-\infty}^x$, si ha che $f(x) \in I_{-\infty}^y$.



Esempio

$$\lim_{x \to -\infty} x^3 = -\infty \quad \iff$$

$$\forall M>0 \quad \exists \ I_{-\infty}=]-\infty$$
 , $-N[\quad /\quad f(x)<-M$, $\ \forall x<-N$

Occorre verificare che la disequazione $x^3 < -M$ è soddisfatta per ogni x appartenente ad un intorno $I_{-\infty}$. Risolviamo pertanto la disequazione: $x^3 < -M$:

Applicando la radice cubica ad entrambi i membri, si ottiene: $x < -\sqrt[3]{M}$.

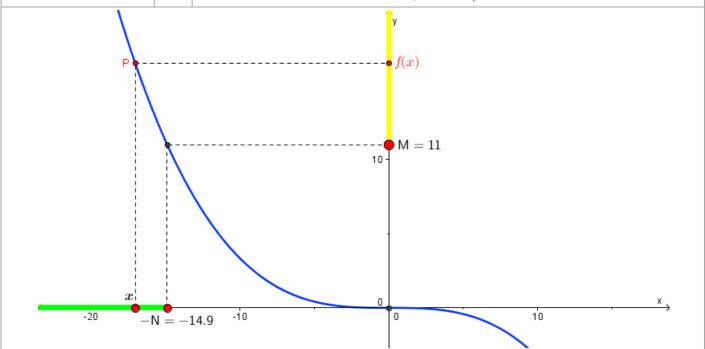
Essa rappresenta un intorno di $-\infty$: $I_{-\infty}^{x} =]-\infty$, $-\sqrt[3]{M}$ [dove $N = \sqrt[3]{M}$ Il limite è pertanto, verificato.

LIMITE INFINITO PER UNA FUNZIONE ALL'INFINITO

$$\lim_{x \to -\infty} f(x) = +\infty \iff$$

$$\forall M > 0 \quad \exists N > 0 \quad / \quad f(x) > M, \quad \forall x < -N$$

Se, comunque si scelga un intorno $I_{+\infty}^y =]M$, $+\infty[$ (scelto grande quanto si vuole), si può determinare in corrispondenza di esso un intorno $I_{-\infty}^x =]-\infty$, -N[tale che $\forall x \in I_{-\infty}^x$, si ha che $f(x) \in I_{+\infty}^y$.



Esempio

$$\lim_{x \to -\infty} -x^3 = +\infty \iff$$

$$\forall M > 0 \quad \exists N > 0 \quad / \quad -x^3 > M, \quad \forall x < -N$$

Occorre verificare che la disequazione $-x^3 > M$ è soddisfatta per ogni x appartenente ad un intorno $I_{-\infty}$.

Risolviamo pertanto la disequazione: $-x^3 > M$:

Cambiamo di segno i due termini: $x^3 < -M$

Applicando la radice cubica ad entrambi i membri, si ottiene: $x < -\sqrt[3]{M}$.

Essa rappresenta un intorno di $-\infty$: $I_{-\infty}^x = \left] -\infty$, $-\sqrt[3]{M} \left[\text{dove } N = \sqrt[3]{M} \right]$

Il limite è pertanto, verificato.